Development of a robust algorithm for detection of nuclei of white blood cells in peripheral blood smear images

  • Roopa B. Hegde
  • Keerthana PrasadEmail author
  • Harishchandra Hebbar
  • Brij Mohan Kumar Singh


Microscopic evaluation of peripheral blood smear analysis is a commonly used laboratory procedure to diagnose various diseases such as anemia, malaria, leukemia, etc. Manual microscopic evaluation is laborious and hence many research groups have attempted to automate smear analysis. Variations in staining procedure and smear preparation introduces color shade variations into peripheral blood smear images. Illumination provided by point source bulb introduces brightness variations across the smear which affects the performance of an automated method. In this paper we present an image processing algorithm for detection of nuclei of white blood cells which is robust to color and brightness variations. In the proposed method we used two different datasets and also five datasets which were derived from original images by introducing brightness variations. We also compared the results of the proposed method with four state-of-the-art methods. The results demonstrate that the proposed method detects nuclei accurately with an average accuracy of 0.99 and Dice coefficient of 0.965.


Peripheral blood smear images Nuclei detection WBC detection Illumination variations Computer aided detection 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Adnan K (2008) IBCIS: intelligent blood cell identification system. Prog Nat Sci 18:1309–1314CrossRefGoogle Scholar
  2. 2.
    Amin MM, Kermani S, Talebi A, Oghli MG (2015) Recognition of acute lymphoblastic leukemia cells in microscopic images using kmeans clustering and support vector machine classifier. J Med Sign Sens 5:49–58Google Scholar
  3. 3.
    Azam B, Qureshi RJ, Jan Z, Khattak TA (2014) Color based segmentation of white blood cells in blood photomicrographs using image quantization. Res J Recent Sci 3(4):34–39Google Scholar
  4. 4.
    Chen J, Ma B, Cao H, Chen J, Fan Y, Xia T, Li R (2017) Attention region detection based on closure prior in layered bit planes. Neurocomputing 251:16–25CrossRefGoogle Scholar
  5. 5.
    Congcong Z, Xiaoyan X, Xiaomei L, Ying-Jie C, Wu Z, Jun C, Chengyun Z, Zhi L (2014) White blood cell segmentation by color-space-based k-means clustering. Sensors (Basel) 14(9):16128–16147CrossRefGoogle Scholar
  6. 6.
    Devi SS, Roy A, Singha J, Sheikh SA, Laskar RH (2017) Malaria infected erythrocyte classification based on a hybrid classifier using microscopic images of thin blood smear. Multimed Tools Appl 77(1):631–660CrossRefGoogle Scholar
  7. 7.
    Dorini LB, Minetto R, Leite NJ (2007) White blood cell segmentation using morphological operators and scale-space analysis. Proc IEEE XX Braz Sym Comput Graph Image Process: 294–304Google Scholar
  8. 8.
    Huang D-C, Hung KD, Chan YK (2012) A computer assisted method for leukocyte nucleus segmentation and recognition in blood smear images. J Syst Softw 85:2104–2118CrossRefGoogle Scholar
  9. 9.
    Jan Z, Khan A, Sajjad M, K. Muhammad, S. Rho, I. Mehmood, (2017) A review on automated diagnosis of malaria parasite in microscopic blood smears images, Multimed Tools Appl: 1–26Google Scholar
  10. 10.
    Jaroonrut P, Charnchai P (2015) Segmentation of white blood cells and comparison of cell morphology by linear and nave bayes classifiers. Biomed Eng Online 14(63):1–19Google Scholar
  11. 11.
    Joshi MD, Karode AH, Suralkar SR (2013) Detection of acute leukemia using white blood cells segmentation based on blood samples. Int J Electron Commun Eng Technol 4:148Google Scholar
  12. 12.
    Kalinathan L, Kathavarayan RS, Nagendram D, Vij M, Rela M (2018) Segmentation of hepatocellular carcinoma and dysplastic liver tumors in histopathology images using area based adaptive expectation maximization. Multimed Tools Appl 77(2):1761–1782CrossRefGoogle Scholar
  13. 13.
    Labati RD, Piuri V, Scotti F (2011) ALL-IDB: the acute lymphoblastic leukemia image database for image processing. Proc IEEE Int Conf Image Process: 2045–2048Google Scholar
  14. 14.
    Li Y, Ziu R, Mi L, Cao Y, Di Yao D (2016) Segmentation of white blood cell from acute lymphoblastic leukemia images using dual-threshold method. Comput Math Methods Med 2016:12Google Scholar
  15. 15.
    Li Y, Li Y, Kim H, Serikawa S (2017) Active contour model-based segmentation algorithm for medical robots recognition, Multimed Tools Appl: 16Google Scholar
  16. 16.
    Lin Y, Meer P, Foran DJ (2005) Unsupervised segmentation based on robust estimation and color active contour models. IEEE Trans Inf Technol Biomed 9(3):475–486CrossRefGoogle Scholar
  17. 17.
    Liu N, Han J, Zhang D, Wen S, Liu T (2015) Predicting eye fixations using convolutional neural networks. Proc IEEE Conf Comput Vision Pattern Recogn.
  18. 18.
    Loffler H, Rastetter J, Haferlach T (2005) Atlas of clinical hematology, sixth edn. SpringerGoogle Scholar
  19. 19.
    Longo D, Harrison TR (2012) Atlas of hematology and analysis of peripheral blood smears. McGraw- HillGoogle Scholar
  20. 20.
    Madhloom HT, Kareem SA, Ariffin H, Zaidan AA, Alanazi HO, Zaidan BB (2010) An automated white blood cell nucleus localization and segmentation using image arithmetic and automatic threshold. J Appl Sci 10(11):959–966CrossRefGoogle Scholar
  21. 21.
    Madhloom HT, Kareem SA, Ariffin H (2012) An image processing application for the localization and segmentation of lymphoblast cell using peripheral blood images. J Med Syst 36:2149–2158CrossRefGoogle Scholar
  22. 22.
    Marzukia NIC, Mahmoodb NH, Razakb MAA (2015) Segmentation of white blood cell nucleus using active contour. J Teknologi 74(6):115–118Google Scholar
  23. 23.
    Mathur A, Tripathi AS, Kuse M (2013) Scalable system for classification of white blood cells from leishman stained blood stain images. J Pathol Inform 4(2):15CrossRefGoogle Scholar
  24. 24.
    Nagabhushana RM, Rajeshwari P (2014) Geometrical analysis of leukocyte nucleus to detect lymphoblast from microscopic blood images. Int J Technol Eng Sci 2(6):1947–1951Google Scholar
  25. 25.
    Nemane JB, Chakkarwar VA, Lahoti PB (2013) White blood cell segmentation and counting using global threshold. Int J Emerg Technol Adv Eng 3:639–643Google Scholar
  26. 26.
    Neoh SC, Srisukkham W, Zhang L, Todryk S, Greystoke B, Lim CP, Hossain MA, Aslam N (2015) An intelligent decision support system for leukaemia diagnosis using microscopic blood images. Sci Rep 5:14Google Scholar
  27. 27.
    Othman MZ, Alaa AB (2014) Segmentation and feature extraction of lymphocytes WBC using microscopic images. Int J Eng Res Technol 3:696–701Google Scholar
  28. 28.
    Prasad K, Bhagath K, Chakravarthy M, Prabhu G (2012) Applications of ‘TissueQuant’ - a color intensity quantification tool for medical research. Comput Methods Prog Biomed 106:27–36CrossRefGoogle Scholar
  29. 29.
    Prasad K, Winter J, Bhat UM, Acharya RV, Prabhu GK (2012) Image analysis approach for development of a decision support system for detection of malaria parasites in thin blood smear images. J Digit Imaging 25:542–549CrossRefGoogle Scholar
  30. 30.
    Ramin S, Hossein R, Ardeshir T (2012) Extraction of nucleolus candidate zone in white blood cells of peripheral blood smear images using curvelet transform. Comput Math Methods Med 2012:12zbMATHGoogle Scholar
  31. 31.
    Rawat J, Singh A, Bhadauria HS (2014) An approach for leukocytes nuclei segmentation based on image fusion, Proc IEEE Int Sym Signal Process Inform Technol (ISSPIT): 456–461Google Scholar
  32. 32.
    Rawat J, Singh A, Bhadauria HS, Virmani J, Devgun JS (2017) Classification of acute lymphoblastic leukaemia using hybrid hierarchical classifiers. Multimed Tools Appl 76(18):19057–19085CrossRefGoogle Scholar
  33. 33.
    Rezatofighi SH, Soltanian-Zadeh H (2011) Automatic recognition of five types of white blood cells in peripheral blood. Comput Med Imaging Graph 35:333–343CrossRefGoogle Scholar
  34. 34.
    Rong C, Xiaoqin Z, Lixin H, Min W, (2015) Subimage cosegmentation in a single white blood cell image. Proc IEEE 7th Int Conf Comput Intell Commun Syst Netw: 152–157Google Scholar
  35. 35.
    Sadeghian F, Seman Z, Ramli AR, Kahar A, Hisham B, Saripan MI (2009) A frame work for white blood cell segmentation in microscopic blood images using digital image processing. Biol Proc Online 11:196–206CrossRefGoogle Scholar
  36. 36.
    Taneja A, Ranjan P, Ujlayan A (2017) Multi-cell nuclei segmentation in cervical cancer images by integrated feature vectors. Multimed Tools Appl: 1–20Google Scholar
  37. 37.
    Yiping Y, Yiping C, Wenxian S (2014) A method of leukocyte segmentation based on S component and B component images. J Innov Optic Health Sci 7(1):1–8Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Roopa B. Hegde
    • 1
    • 2
  • Keerthana Prasad
    • 1
    Email author
  • Harishchandra Hebbar
    • 1
  • Brij Mohan Kumar Singh
    • 3
  1. 1.School of Information SciencesMAHEManipalIndia
  2. 2.Department of ECENAMAMITNitteIndia
  3. 3.Department of PathologyKMC, MAHEManipalIndia

Personalised recommendations