Advertisement

Scalable and flexible wireless distributed architecture for intelligent video surveillance systems

  • Isaac Martín de Diego
  • Ignacio San Román
  • Javier Cano Montero
  • Cristina Conde
  • Enrique Cabello
Article
  • 31 Downloads

Abstract

This paper presents a novel distributed intelligent video surveillance architecture based on Wireless Multimedia Sensor Networks (WMSNs). This architecture is part of a video surveillance project and has been built using the Robot Operating System (ROS). ROS allows to develop and connect (through wireless TCP-IP) several modules to process and manage multimedia data in an easy way. The real-time intelligent surveillance system has been trained for detecting, tracking and monitoring people and vehicles in an indoor-outdoor real environment. The test process shows the reliability of the developed system as a tool for the identification of security incidents. Besides, using wireless connections and a distributed architecture together, we have achieved a really flexible, easy to install and lower-maintenance system that supports many different devices. Thus, the proposed architecture can be applied in distributed locations such as smart cities.

Keywords

Intelligent video surveillance architecture Distributed system Robot operating system Wireless multimedia sensor network 

Notes

Acknowledgements

This work is supported by the Ministerio de Economíıa y Competitividad from Spain INVISUM (RTC-2014-2346-8). The authors would like to thank Cesar Benavente Peces, professor at ‘Universidad Politecnica de Madrid, for his time and effort in the form of review and feedback’.

References

  1. 1.
    Ahad Md AR (2013) Motion History Images for Action Recognition and Understanding. SpringerGoogle Scholar
  2. 2.
    Alaya Cheikh F, Saha SK, Rudakova V, Wang P (2012) Multipeople tracking across multiple cameras. International Journal on New Computer Architectures and Their Applications (IJNCAA) 2(1):23–33 The Society of Digital Information and Wireless CommunicationsGoogle Scholar
  3. 3.
    Babu RV, Ramakrishnan K (2004) Recognition of human actions using motion history information extracted from the compressed video. Image Vis Comput 22(8):597–607CrossRefGoogle Scholar
  4. 4.
    Chua JL, Chang YC, Lim WK (2013) A simple vision-based fall detection technique for indoor video surveillance. SIViP 9(3):623–633CrossRefGoogle Scholar
  5. 5.
    Du S, Ibrahim M, Shehata M, Badawy W (2013) Automatic license plate recognition (alpr): A stateof-the-art review. Circuits and Systems for Video Technology, IEEE Transactions 23(2):311–325CrossRefGoogle Scholar
  6. 6.
    GOMSEGUR (2014). www.gomsegur.com. Accessed Dec 2017
  7. 7.
    Huynh T (2015) Fundamentals of thermal sensors. In: Jha CM (ed) Thermal Sensors. Springer, New YorkGoogle Scholar
  8. 8.
    INVISUM (2014). http://www.invisum.es. Accessed Dec 2017
  9. 9.
    Ju J, Ku B, Kim D, Song T, Han DK, Ko H (2015) Online multi-person tracking for intelligent video surveillance systems. In: Consumer Electronics (ICCE), 2015 IEEE International Conference on, pp. 345–346. IEEEGoogle Scholar
  10. 10.
    Kadhm MS, Yun LS (2015) Propose a simple and practical vehicle logo detection and extraction framework. International Journal of Emerging Tendrs and Technology in Computer Sciences 4(3)Google Scholar
  11. 11.
    Kalantar-Zadeh K (2013) Sensors: an introductory course. Springer Science & Business MediaGoogle Scholar
  12. 12.
    Maltoni D, Maio D, Jain AK, Prabhakar S (2009) Handbook of Fingerprint Recognition, 2nd edn. Springer Publishing Company, IncorporatedGoogle Scholar
  13. 13.
    Martín de Diego I, Muñoz A, Moguerza JM (2010) Methods for the combination of kernel matrices within a support vector framework. Mach Learn 78(1–2):137–174MathSciNetCrossRefGoogle Scholar
  14. 14.
    Martín de Diego I, San Román I, Conde C, Cabello E (2017) WYA 2: Optimal Individual Features Extraction for VideoSurveillance Re-identification. SIGMAP: 14th International Conference on Signal Processing and Multimedia ApplicationsGoogle Scholar
  15. 15.
    Martín de Diego I, Serrano A, Conde C, Cabello E (2010) Face verification with a kernel fusion method. Pattern Recogn Lett 31(9):837–844CrossRefGoogle Scholar
  16. 16.
    Martín de Diego I, Siordia OS, Crespo R, Conde C, Cabello E (2013) Analysis of hands activity for automatic driving risk detection. Transportation Research Part C: Emerging Technologies 26:380–395CrossRefGoogle Scholar
  17. 17.
    Moctezuma D, Conde C, De Diego IM, Cabello E (2015) Soft-biometrics evaluation for people reidentification in uncontrolled multi-camera environments. EURASIP Journal on Image and Video Processing 2015(1):1–20CrossRefGoogle Scholar
  18. 18.
    Moctezuma D, Conde C, Martin de Diego I, Cabello E (2013) Incremental learning with soft-biometric features for people re-identification in multi-camera environments. In: Digital Image Computing: Techniques and Applications (DICTA), 2013 International Conference on, pp. 1–7. IEEEGoogle Scholar
  19. 19.
    Morris BT, Trivedi MM (2008) Learning and classification of trajectories in dynamic scenes: A general framework for live video analysis. In: Advanced Video and Signal Based Surveillance, 2008. AVSS’08. IEEE Fifth International Conference on, pp. 154–161. IEEEGoogle Scholar
  20. 20.
    Nam Y, Rho S, Park JH (2012) Intelligent video surveillance system: 3-tier context-aware surveillance system with metadata. Multimedia Tools Appl 57(2):315–334.  https://doi.org/10.1007/s11042-010-0677-x.URL10.1007/s11042-010-0677-x
  21. 21.
    Nuppeney M (2014) Automated border control–state of play and latest developments. NIST International Biometric Performance Conference, In, pp 1–3Google Scholar
  22. 22.
    Oh JM, Kim KH, Hong S, Moon N (2014) Execution behavior modeling methodology for large scale surveillance system design and evaluation. Advances in Multimedia 2014:15CrossRefGoogle Scholar
  23. 23.
    Quigley M, Conley K, Gerkey B, Faust J, Foote T, Leibs J, Wheeler R, Ng AY (2009) Ros: an open-source robot operating system. ICRA Workshop on Open Source Software 3:5Google Scholar
  24. 24.
    Rho S, Rahayu W, Nguyen UT (2015) Intelligent video surveillance in crowded scenes. Information Fusion 24:1–2CrossRefGoogle Scholar
  25. 25.
    Ribnick E, Atev S, Masoud O, Papanikolopoulos N, Voyles R (2006) Real-time detection of camera tampering. In: Video and Signal Based Surveillance, 2006. AVSS’06. IEEE International Conference on, pp. 10–10. IEEEGoogle Scholar
  26. 26.
    Rougier C, Meunier J, St-Arnaud A, Rousseau J (2007) Fall detection from human shape and motion history using video surveillance. In: Advanced Information Networking and Applications Workshops, 2007, AINAW’07. 21st International Conference on, vol. 2, pp. 875–880. IEEEGoogle Scholar
  27. 27.
    San Román I, Martín de Diego I, Conde C, Cabello E (2017) Context-aware distance for anomalous human trajectories detection. IbPRIA 2017: 8th Iberian Conference on Pattern Recognition and Image Analysis, FaroGoogle Scholar
  28. 28.
    Sanchez del Rio J, Conde C, Tsitiridis A, Raul Gomez J, Martin de Diego I, Cabello E (2015) Face-based recognition systems in the abc e-gates. In: Systems Conference (SysCon), 2015 9th Annual IEEE International, pp. 340–346. IEEEGoogle Scholar
  29. 29.
    Serrano A, de Diego IM, Conde C, Cabello E, Shen L, Bai L (2007) Influence of wavelet frequency and orientation in an SVM-based parallel Gabor PCA face verification system. In: Intelligent Data Engineering and Automated Learning-IDEAL 2007, pp. 219–228. SpringerGoogle Scholar
  30. 30.
    Siordia OS, Martin de Diego I, Conde C, Cabello E (2014) Subjective traffic safety experts’ knowledge for driving-risk definition. Intelligent Transportation Systems, IEEE Transactions on 15(4):1823–1834CrossRefGoogle Scholar
  31. 31.
    Tian Y, Feris RS, Liu H, Hampapur A, Sun MT (2011) Robust detection of abandoned and removed objects in complex surveillance videos. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions 41(5):565–576CrossRefGoogle Scholar
  32. 32.
    Tung F, Zelek JS, Clausi DA (2011) Goal-based trajectory analysis for unusual behaviour detection in intelligent surveillance. Image Vis Comput 29(4):230–240CrossRefGoogle Scholar
  33. 33.
    Valera M, Velastin SA (2005) Intelligent distributed surveillance systems: a review. In: Vision, Image and Signal Processing, IEE Proceedings, vol. 152, pp. 192–204. IETGoogle Scholar
  34. 34.
    Video surveillance system (camera, storage, monitor, software and services) market size: Global analysis and forecast - 2014 to 2020. (2014). http://www.researchandmarkets.com/reports/2876216/
  35. 35.
    Wang X (2013) Intelligent multi-camera video surveillance: A review. Pattern Recogn Lett 34(1):3–19CrossRefGoogle Scholar
  36. 36.
    Zhan B, Monekosso D, Remagnino P, Velastin S, Xu LQ (2008) Crowd analysis: a survey. Mach Vis Appl 19(5–6):345–357.  https://doi.org/10.1007/s00138-008-0132-4 CrossRefGoogle Scholar
  37. 37.
    Zhang T, Chowdhery A, Bahl PV, Jamieson K, Banerjee S (2015) The design and implementation of a wireless video surveillance system. In: Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, pp. 426–438. ACMGoogle Scholar
  38. 38.
    Zhang Z, Conly C, Athitsos V (2015) A survey on vision-based fall detection. In: Proceedings of the 8th ACM International Conference on PErvasive Technologies Related to Assistive Environments. ACMGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Isaac Martín de Diego
    • 1
  • Ignacio San Román
    • 1
  • Javier Cano Montero
    • 1
  • Cristina Conde
    • 1
  • Enrique Cabello
    • 1
  1. 1.Face Recognition and Artificial Vision groupUniversity Rey Juan CarlosMóstolesSpain

Personalised recommendations