Face retrieval using frequency decoded local descriptor

  • Shiv Ram DubeyEmail author


The local descriptors have been the backbone of most of the computer vision problems. Most of the existing local descriptors are generated over the raw input images. In order to increase the discriminative power of the local descriptors, some researchers converted the raw image into multiple images with the help of some high and low pass frequency filters, then the local descriptors are computed over each filtered image and finally concatenated into a single descriptor. By doing so, these approaches do not utilize the inter frequency relationship which causes the less improvement in the discriminative power of the descriptor that could be achieved. In this paper, this problem is solved by utilizing the decoder concept of multi-channel decoded local binary pattern over the multi-frequency patterns. A frequency decoded local binary pattern (FDLBP) is proposed with two decoders. Each decoder works with one low frequency pattern and two high frequency patterns. Finally, the descriptors from both decoders are concatenated to form the single descriptor. The face retrieval experiments are conducted over four benchmarks and challenging databases such as PaSC, LFW, PubFig, and ESSEX. The experimental results confirm the superiority of the FDLBP descriptor as compared to the state-of-the-art descriptors such as LBP, SOBEL_LBP, BoF_LBP, SVD_S_LBP, mdLBP, etc.


Local descriptor High frequency Low frequency Unconstrained Retrieval Face Decoder 



This research is funded by IIIT Sri City, India through the Faculty Seed Research Grant.


  1. 1.
    Ahonen T, Hadid A, Pietikainen M (2006) Face description with local binary patterns: application to face recognition. IEEE Trans Pattern Anal Mach Intell 28 (12):2037–2041CrossRefGoogle Scholar
  2. 2.
    Beveridge JR, Phillips PJ, Bolme DS, Draper BA, Givens GH, Lui YM, Teli MN, Zhang H, Scruggs WT, Bowyer KW et al (2013) The challenge of face recognition from digital point-and-shoot cameras. In: 2013 IEEE sixth international conference on biometrics: theory, applications and systems (BTAS). IEEE, pp 1–8Google Scholar
  3. 3.
    Cao Z, Yin Q, Tang X, Sun J (2010) Face recognition with learning-based descriptor. In: 2010 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 2707–2714Google Scholar
  4. 4.
    Chakraborty S, Singh SK, Chakraborty P (2017) Local directional gradient pattern: a local descriptor for face recognition. Multimed Tools Appl 76 (1):1201–1216CrossRefGoogle Scholar
  5. 5.
    Ding C, Tao D (2016) A comprehensive survey on pose-invariant face recognition. ACM Trans Intell Syst Technol (TIST) 7(3):37Google Scholar
  6. 6.
    Ding L, Ding X, Fang C (2012) Continuous pose normalization for pose-robust face recognition. IEEE Signal Process Lett 19(11):721–724CrossRefGoogle Scholar
  7. 7.
    Ding C, Xu C, Tao D (2015) Multi-task pose-invariant face recognition. IEEE Trans Image Process 24(3):980–993MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ding C, Choi J, Tao D, Davis LS (2016) Multi-directional multi-level dual-cross patterns for robust face recognition. IEEE Trans Pattern Anal Mach Intell 38(3):518–531CrossRefGoogle Scholar
  9. 9.
    Dubey SR, Singh SK, Singh RK (2014) Rotation and illumination invariant interleaved intensity order-based local descriptor. IEEE Trans Image Process 23(12):5323–5333MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dubey SR, Singh SK, Singh RK (2015) Boosting local binary pattern with bag-of-filters for content based image retrieval. In: 2015 IEEE UP section conference on electrical computer and electronics (UPCON). IEEE, pp 1–6Google Scholar
  11. 11.
    Dubey SR, Singh SK, Singh RK (2015) Local diagonal extrema pattern: a new and efficient feature descriptor for ct image retrieval. IEEE Signal Process Lett 22 (9):1215–1219CrossRefGoogle Scholar
  12. 12.
    Dubey SR, Singh SK, Singh RK (2015) Local neighbourhood-based robust colour occurrence descriptor for colour image retrieval. IET Image Process 9(7):578–586CrossRefGoogle Scholar
  13. 13.
    Dubey SR, Singh SK, Singh RK (2015) Local wavelet pattern: a new feature descriptor for image retrieval in medical ct databases. IEEE Trans Image Process 24 (12):5892–5903MathSciNetCrossRefGoogle Scholar
  14. 14.
    Dubey SR, Singh SK, Singh RK (2015) A multi-channel based illumination compensation mechanism for brightness invariant image retrieval. Multimed Tools Appl 74(24):11,223–11,253CrossRefGoogle Scholar
  15. 15.
    Dubey SR, Singh SK, Singh RK (2015) Rotation and scale invariant hybrid image descriptor and retrieval. Comput Electr Eng 46:288–302CrossRefGoogle Scholar
  16. 16.
    Dubey SR, Singh SK, Singh RK (2016) Local bit-plane decoded pattern: a novel feature descriptor for biomedical image retrieval. IEEE J Biomed Health Inf 20(4):1139–1147CrossRefGoogle Scholar
  17. 17.
    Dubey SR, Singh SK, Singh RK (2016) Multichannel decoded local binary patterns for content-based image retrieval. IEEE Trans Image Process 25(9):4018–4032MathSciNetCrossRefGoogle Scholar
  18. 18.
    Dubey SR, Singh SK, Singh RK (2016) Novel local bit-plane dissimilarity pattern for computed tomography image retrieval. Electron Lett 52(15):1290–1292CrossRefGoogle Scholar
  19. 19.
    Dubey SR, Singh SK, Singh RK (2017) Local svd based nir face retrieval. J Vis Commun Image Represent 49:141–152CrossRefGoogle Scholar
  20. 20.
    Fan KC, Hung TY (2014) A novel local pattern descriptor—local vector pattern in high-order derivative space for face recognition. IEEE Trans Image Process 23 (7):2877–2891MathSciNetCrossRefGoogle Scholar
  21. 21.
    Huang GB, Ramesh M, Berg T, Learned-Miller E (2007) Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Tech. rep., Technical Report 07-49, University of Massachusetts, AmherstGoogle Scholar
  22. 22.
    Huang D, Shan C, Ardabilian M, Wang Y, Chen L (2011) Local binary patterns and its application to facial image analysis: a survey. IEEE Trans Syst Man Cybern Part C Appl Rev 41(6):765–781CrossRefGoogle Scholar
  23. 23.
    Jeong K, Choi J, Jang GJ (2015) Semi-local structure patterns for robust face detection. IEEE Signal Process Lett 22(9):1400–1403CrossRefGoogle Scholar
  24. 24.
    Kan SC, Cen YG, Cen Y, Wang YH, Voronin V, Mladenovic V, Zeng M (2017) Surf binarization and fast codebook construction for image retrieval. J Vis Commun Image Represent 49:104–114CrossRefGoogle Scholar
  25. 25.
    Kumar N, Berg AC, Belhumeur PN, Nayar SK (2009) Attribute and simile classifiers for face verification. In: 2009 IEEE 12th international conference on computer vision. IEEE, pp 365–372Google Scholar
  26. 26.
    Lei Z, Pietikäinen M, Li SZ (2014) Learning discriminant face descriptor. IEEE Trans Pattern Anal Mach Intell 36(2):289–302CrossRefGoogle Scholar
  27. 27.
    Liao S, Law MW, Chung AC (2009) Dominant local binary patterns for texture classification. IEEE Trans Image Process 18(5):1107–1118MathSciNetCrossRefGoogle Scholar
  28. 28.
    Liu L, Long Y, Fieguth PW, Lao S, Zhao G (2014) Brint: binary rotation invariant and noise tolerant texture classification. IEEE Trans Image Process 23(7):3071–3084MathSciNetCrossRefGoogle Scholar
  29. 29.
    Lu J, Erin Liong V, Zhou J (2015) Simultaneous local binary feature learning and encoding for face recognition. In: Proceedings of the IEEE international conference on computer vision, pp 3721–3729Google Scholar
  30. 30.
    Lu J, Liong VE, Zhou X, Zhou J (2015) Learning compact binary face descriptor for face recognition. IEEE Trans Pattern Anal Mach Intell 37(10):2041–2056CrossRefGoogle Scholar
  31. 31.
    Lu K, He N, Xue J, Dong J, Shao L (2015) Learning view-model joint relevance for 3d object retrieval. IEEE Trans Image Process 24(5):1449–1459MathSciNetCrossRefGoogle Scholar
  32. 32.
    Murala S, Maheshwari R, Balasubramanian R (2012) Local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Trans Image Process 21(5):2874–2886MathSciNetCrossRefGoogle Scholar
  33. 33.
    Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987CrossRefGoogle Scholar
  34. 34.
    Pietikäinen M, Hadid A, Zhao G, Ahonen T (2011) Local binary patterns for still images. In: Computer vision using local binary patterns. Springer, pp 13–47Google Scholar
  35. 35.
    Punnappurath A, Rajagopalan AN, Taheri S, Chellappa R, Seetharaman G (2015) Face recognition across non-uniform motion blur, illumination, and pose. IEEE Trans Image Process 24(7):2067–2082MathSciNetCrossRefGoogle Scholar
  36. 36.
    PVSSR CM, et al. (2016) Dimensionality reduced local directional pattern (dr-ldp) for face recognition. Expert Syst Appl 63:66–73CrossRefGoogle Scholar
  37. 37.
    Qi X, Xiao R, Li CG, Qiao Y, Guo J, Tang X (2014) Pairwise rotation invariant co-occurrence local binary pattern. IEEE Trans Pattern Anal Mach Intell 36 (11):2199–2213CrossRefGoogle Scholar
  38. 38.
    Ren CX, Lei Z, Dai DQ, Li SZ (2016) Enhanced local gradient order features and discriminant analysis for face recognition. IEEE Trans Cybern 46 (11):2656–2669CrossRefGoogle Scholar
  39. 39.
    Ryu B, Rivera AR, Kim J, Chae O (2017) Local directional ternary pattern for facial expression recognition. IEEE Trans Image Process 26(12):6006–6018MathSciNetCrossRefGoogle Scholar
  40. 40.
    Schroff F, Kalenichenko D, Philbin J (2015) Facenet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 815–823Google Scholar
  41. 41.
    Spacek L University of essex face database.
  42. 42.
    Taigman Y, Yang M, Ranzato M, Wolf L (2014) Deepface: closing the gap to human-level performance in face verification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1701–1708Google Scholar
  43. 43.
    Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19(6):1635–1650MathSciNetCrossRefGoogle Scholar
  44. 44.
    Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition, 2001. CVPR 2001, vol 1. IEEE, pp I–IGoogle Scholar
  45. 45.
    Vu NS (2013) Exploring patterns of gradient orientations and magnitudes for face recognition. IEEE Trans Inf Forensics Secur 8(2):295–304CrossRefGoogle Scholar
  46. 46.
    Vu NS, Caplier A (2012) Enhanced patterns of oriented edge magnitudes for face recognition and image matching. IEEE Trans Image Process 21(3):1352–1365MathSciNetCrossRefGoogle Scholar
  47. 47.
    Vu NS, Dee HM, Caplier A (2012) Face recognition using the poem descriptor. Pattern Recogn 45(7):2478–2488CrossRefGoogle Scholar
  48. 48.
    Wang Y, Cen Y, Zhao R, Cen Y, Hu S, Voronin V, Wang H (2017) Separable vocabulary and feature fusion for image retrieval based on sparse representation. Neurocomputing 236:14–22CrossRefGoogle Scholar
  49. 49.
    Wang Y, Cen Y, Zhao R, Zhang L, Kan S, Hu S (2018) Compressed sensing based feature fusion for image retrieval. J Ambient Intell Humaniz Comput:1–13.
  50. 50.
    Wolf L, Hassner T, Taigman Y (2011) Effective unconstrained face recognition by combining multiple descriptors and learned background statistics. IEEE Trans Pattern Anal Mach Intell 33(10):1978–1990CrossRefGoogle Scholar
  51. 51.
    Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31 (2):210–227CrossRefGoogle Scholar
  52. 52.
    Yang B, Chen S (2013) A comparative study on local binary pattern (lbp) based face recognition: Lbp histogram versus lbp image. Neurocomputing 120:365–379CrossRefGoogle Scholar
  53. 53.
    Zhang X, Gao Y (2009) Face recognition across pose: a review. Pattern Recogn 42(11):2876–2896CrossRefGoogle Scholar
  54. 54.
    Zhang B, Gao Y, Zhao S, Liu J (2010) Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans Image Process 19(2):533–544MathSciNetCrossRefGoogle Scholar
  55. 55.
    Zhao W, Chellappa R, Phillips PJ, Rosenfeld A (2003) Face recognition: a literature survey. ACM Comput Surv (CSUR) 35(4):399–458CrossRefGoogle Scholar
  56. 56.
    Zhao S, Gao Y, Zhang B (2008) Sobel-lbp. In: 15th IEEE international conference on image processing, 2008. ICIP 2008. IEEE, pp 2144–2147Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Computer Vision GroupIndian Institute of Information TechnologySri CityIndia

Personalised recommendations