Advertisement

Kinship verification from face images in discriminative subspaces of color components

  • Oualid LaiadiEmail author
  • Abdelmalik Ouamane
  • Elhocine Boutellaa
  • Abdelhamid Benakcha
  • Abdelmalik Taleb-Ahmed
  • Abdenour Hadid
Article
  • 61 Downloads

Abstract

Automatic facial kinship verification is a challenging topic in computer vision due to its complexity and its important role in many applications such as finding missing children and forensics. This paper presents a Facial Kinship Verification (FKV) approach based on an automatic and more efficient two-step learning into color/texture information. Most of the proposed methods in automatic kinship verification from face images consider the luminance information only (i.e. gray-scale) and exclude the chrominance information (i.e. color) that can be helpful, as an additional cue, for predicting relationships. We explore the joint use of color-texture information from the chrominance and the luminance channels by extracting complementary low-level features from different color spaces. More specifically, the features are extracted from each color channel of the face image and fused to achieve better discrimination. We investigate different descriptors on the existing face kinship databases, illustrating the usefulness of color information, compared with the gray-scale counterparts, in seven various color spaces. Especially, we generate from each color space three subspaces projection matrices and then score fusion methodology to fuse three distances belonging to each test pair face images. Experiments on three benchmark databases, namely the Cornell KinFace, the KinFaceW (I & II) and the TSKinFace database, show superior results compared to the state of the art.

Keywords

Kinship verification Face images Two-step learning Gray-scale Color spaces Chrominance and luminance 

Notes

References

  1. 1.
    Alirezazadeh P, Fathi A, Abdali-Mohammadi F (2015) A genetic algorithm-based feature selection for kinship verification. IEEE Signal Process Lett 22(12):2459–2463.  https://doi.org/10.1109/LSP.2015.2490805 CrossRefGoogle Scholar
  2. 2.
    Alvergne A, Oda R, Faurie C, Matsumoto-Oda A, Durand V, Raymond M (2009) Cross-cultural perceptions of facial resemblance between kin. J Vis 9(6):23.  https://doi.org/10.1167/9.6.23 CrossRefGoogle Scholar
  3. 3.
    Bleyer M, Chambon S, Poppe U, Gelautz M (2008) Evaluation of different methods for using colour information in global stereo matching approaches. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVII, Part B3a, pp 415–420. Vol. XXXVII, Part B3a, Beijing. http://publik.tuwien.ac.at/files/PubDat_169068.pdf. Vortrag: ISPRS Congress Beijing 2008, Beijing - China; 2008-07-03 – 2008-07-11
  4. 4.
    Brahnam S, Jain C, L, Nanni L, Lumini A (2014) Local Binary Patterns: New Variants and Applications, vol 506Google Scholar
  5. 5.
    Chan CH, Kittler J, Poh N, Ahonen T, Pietikäinen M (2009) (multiscale) local phase quantisation histogram discriminant analysis with score normalisation for robust face recognition. In: 2009 IEEE 12th international conference on computer vision workshops, ICCV workshops, pp 633–640.  https://doi.org/10.1109/ICCVW.2009.5457642
  6. 6.
    Chan CH, Tahir MA, Kittler J, Pietikäinen M. (2013) Multiscale local phase quantization for robust component-based face recognition using kernel fusion of multiple descriptors. IEEE Trans Pattern Anal Mach Intell 35(5):1164–1177.  https://doi.org/10.1109/TPAMI.2012.199 CrossRefGoogle Scholar
  7. 7.
    Choi JY, Ro YM, Plataniotis KN (2009) Color face recognition for degraded face images. IEEE Trans Syst Man Cybern B (Cybern) 39(5):1217–1230.  https://doi.org/10.1109/TSMCB.2009.2014245 CrossRefGoogle Scholar
  8. 8.
    Dal Martello MF, Maloney LT (2006) Where are kin recognition signals in the human face? J Vis 6(12):2.  https://doi.org/10.1167/6.12.2 CrossRefGoogle Scholar
  9. 9.
    DeBruine LM, Smith FG, Jones BC, Roberts SC, Petrie M, Spector TD (2009) Kin recognition signals in adult faces. Vis Res 49 (1):38–43.  https://doi.org/10.1016/j.visres.2008.09.025. http://www.sciencedirect.com/science/article/pii/S0042698908004707 CrossRefGoogle Scholar
  10. 10.
    Dehghan A, Ortiz EG, Villegas R, Shah M (2014) Who do i look like? determining parent-offspring resemblance via gated autoencoders. In: 2014 IEEE Conference on computer vision and pattern recognition, pp 1757–1764.  https://doi.org/10.1109/CVPR.2014.227
  11. 11.
    Draper BA, Baek K, Bartlett MS, Beveridge J (2003) Recognizing faces with pca and ica. Comput Vis Image Underst 91(1):115–137.  https://doi.org/10.1016/S1077-3142(03)00077-8. http://www.sciencedirect.com/science/article/pii/S1077314203000778. Special Issue on Face RecognitionCrossRefGoogle Scholar
  12. 12.
    Fang R, Tang KD, Snavely N, Chen T (2010) Towards computational models of kinship verification. In: 2010 IEEE International conference on image processing, pp 1577–1580.  https://doi.org/10.1109/ICIP.2010.5652590
  13. 13.
    Guo Y, Dibeklioglu H, van der Maaten L (2014) Graph-based kinship recognition. In: 2014 22nd international conference on pattern recognition, pp 4287–4292.  https://doi.org/10.1109/ICPR.2014.735
  14. 14.
    Harrell FE Jr (2015) Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis. SpringerGoogle Scholar
  15. 15.
    Hu J, Lu J, Tan YP (2014) Discriminative deep metric learning for face verification in the wild. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR ’14.  https://doi.org/10.1109/CVPR.2014.242. IEEE Computer Society, Washington, DC, pp 1875–1882
  16. 16.
    Hu J, Lu J, Yuan J, Tan YP (2015) Large margin multi-metric learning for face and kinship verification in the wild. Springer International Publishing, Cham, pp 252–267.  https://doi.org/10.1007/978-3-319-16811-1_17 Google Scholar
  17. 17.
    Huajie J, Lichun W, Yanfeng S, Yongli H (2012) Color face recognition based on color space normalization and quaternion matrix representation. In: 2012 4th international conference on digital home, pp 133–137.  https://doi.org/10.1109/ICDH.2012.19
  18. 18.
    Hyvärinen A, Hurri J, Hoyer PO (2009) Natural image statistics: a probabilistic approach to early computational vision, vol 39Google Scholar
  19. 19.
    Kaminski G, Dridi S, Graff C, Gentaz E (2009) Human ability to detect kinship in strangers’ faces: effects of the degree of relatedness. Proc R Soc Lond B Biol Sci 276(1670):3193–3200.  https://doi.org/10.1098/rspb.2009.0677. http://rspb.royalsocietypublishing.org/content/276/1670/3193 CrossRefGoogle Scholar
  20. 20.
    Kaminski G, Ravary F, Graff C, Gentaz E (2010) Firstborns’ disadvantage in kinship detection. Psychol Sci 21(12):1746–1750.  https://doi.org/10.1177/0956797610388045. PMID: 21051523CrossRefGoogle Scholar
  21. 21.
    Kannala J, Rahtu E (2012) Bsif: Binarized statistical image features. In: Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), pp 1363–1366Google Scholar
  22. 22.
  23. 23.
    Liu Q, Puthenputhussery A, Liu C (2015) Inheritable fisher vector feature for kinship verification. In: 2015 IEEE 7th international conference on biometrics theory, applications and systems (BTAS), pp 1–6.  https://doi.org/10.1109/BTAS.2015.7358768
  24. 24.
    Liu Z, Liu C (2008) Fusion of the complementary discrete cosine features in the yiq color space for face recognition. Comput Vis Image Underst 111(3):249–262.  https://doi.org/10.1016/j.cviu.2007.12.002. http://www.sciencedirect.com/science/article/pii/S1077314207001683 CrossRefGoogle Scholar
  25. 25.
    Lu J, Hu J, Tan YP (2017) Discriminative deep metric learning for face and kinship verification. IEEE Trans Image Process 26(9):4269–4282.  https://doi.org/10.1109/TIP.2017.2717505 MathSciNetCrossRefGoogle Scholar
  26. 26.
    Lu J, Zhou X, Tan YP, Shang Y, Zhou J (2014) Neighborhood repulsed metric learning for kinship verification. IEEE Trans Pattern Anal Mach Intell 36(2):331–345.  https://doi.org/10.1109/TPAMI.2013.134 CrossRefGoogle Scholar
  27. 27.
    Meina Kan Shiguang Shan DX, Chen X (2011) Side-information based linear discriminant analysis for face recognition. In: Proc. BMVC, pp 125.1–125.0.  https://doi.org/10.5244/C.25.125
  28. 28.
    Nosaka R, Ohkawa Y, Fukui K (2012) Feature extraction based on co-occurrence of adjacent local binary patterns. Springer, Berlin, pp 82–91.  https://doi.org/10.1007/978-3-642-25346-1_8 Google Scholar
  29. 29.
    Ojansivu V, Heikkilä J (2008) Blur insensitive texture classification using local phase quantization. Springer, Berlin, pp 236–243.  https://doi.org/10.1007/978-3-540-69905-7_27 Google Scholar
  30. 30.
    Ouamane A, Bengherabi M, Hadid A, Cheriet M (2015) Side-information based exponential discriminant analysis for face verification in the wild. In: 2015 11th IEEE international conference and workshops on automatic face and gesture recognition (FG), vol 02, pp 1–6.  https://doi.org/10.1109/FG.2015.7284837
  31. 31.
    Ouamane A, Messaoud B, Guessoum A, Hadid A, Cheriet M (2014) Multi scale multi descriptor local binary features and exponential discriminant analysis for robust face authentication. In: 2014 IEEE International conference on image processing (ICIP), pp 313–317.  https://doi.org/10.1109/ICIP.2014.7025062
  32. 32.
    Qin X, Tan X, Chen S (2015) Tri-subject kinship verification: Understanding the core of a family. IEEE Trans Multimed 17(10):1855–1867.  https://doi.org/10.1109/TMM.2015.2461462 CrossRefGoogle Scholar
  33. 33.
    Shao M, Xia S, Fu Y (2011) Genealogical face recognition based on ub kinface database. In: CVPR 2011 WORKSHOPS, pp 60–65.  https://doi.org/10.1109/CVPRW.2011.5981801
  34. 34.
    Shao M, Xia S, Fu Y (2014) Identity and kinship relations in group pictures. Springer International Publishing, Cham, pp 175–190.  https://doi.org/10.1007/978-3-319-05491-9_9 Google Scholar
  35. 35.
    Sturm RA, Box NF, Ramsay M (1998) Human pigmentation genetics: the difference is only skin deep. BioEssays 20(9):712–721.  https://doi.org/10.1002/(SICI)1521-1878(199809)20:9<712::AID-BIES4>3.0.CO;2-I CrossRefGoogle Scholar
  36. 36.
    Torres L, Reutter JY, Lorente L (1999) The importance of the color information in face recognition. In: Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348), vol 3, pp 627–631.  https://doi.org/10.1109/ICIP.1999.817191
  37. 37.
    Wu F, Jing XY, Dong X, Ge Q, Wu S, Liu Q, Yue D, Yang J (2016) Uncorrelated multi-set feature learning for color face recognition. Pattern Recogn 60:630–646.  https://doi.org/10.1016/j.patcog.2016.06.010. http://www.sciencedirect.com/science/article/pii/S0031320316301261 CrossRefGoogle Scholar
  38. 38.
    Wu X, Boutellaa E, López M. B., Feng X, Hadid A (2016) On the usefulness of color for kinship verification from face images. In: 2016 IEEE International workshop on information forensics and security (WIFS), pp 1–6.  https://doi.org/10.1109/WIFS.2016.7823901
  39. 39.
    Xia S, Shao M, Fu Y (2011) Kinship verification through transfer learning. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence - Volume Volume Three, IJCAI’11, pp 2539–2544. AAAI Press.  https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-422
  40. 40.
    Xia S, Shao M, Luo J, Fu Y (2012) Understanding kin relationships in a photo. IEEE Trans Multimed 14(4):1046–1056.  https://doi.org/10.1109/TMM.2012.2187436 CrossRefGoogle Scholar
  41. 41.
    Yan H (2017) Kinship verification using neighborhood repulsed correlation metric learning. Image Vision Comput 60(C):91–97.  https://doi.org/10.1016/j.imavis.2016.08.009 CrossRefGoogle Scholar
  42. 42.
    Yan H, Lu J, Deng W, Zhou X (2014) Discriminative multimetric learning for kinship verification. IEEE Trans Inf Forensic Secur 9(7):1169–1178.  https://doi.org/10.1109/TIFS.2014.2327757 CrossRefGoogle Scholar
  43. 43.
    Yan H, Lu J, Zhou X (2015) Prototype-based discriminative feature learning for kinship verification. IEEE Trans Cybern 45(11):2535–2545.  https://doi.org/10.1109/TCYB.2014.2376934 CrossRefGoogle Scholar
  44. 44.
    Yang J, Liu C (2008) Color image discriminant models and algorithms for face recognition. IEEE Trans Neural Netw 19(12):2088–2098.  https://doi.org/10.1109/TNN.2008.2003187 CrossRefGoogle Scholar
  45. 45.
    Yip AW, Sinha P (2002) Contribution of color to face recognition. Perception 31(8):995–1003.  https://doi.org/10.1068/p3376. PMID: 12269592CrossRefGoogle Scholar
  46. 46.
    Zhang T, Fang B, Tang YY, Shang Z, Xu B (2010) Generalized discriminant analysis: A matrix exponential approach. IEEE Trans Syst Man Cybern B (Cybern) 40(1):186–197.  https://doi.org/10.1109/TSMCB.2009.2024759 CrossRefGoogle Scholar
  47. 47.
    Zhao M, Zhang Z, Chow TW, Li B (2014) Soft label based linear discriminant analysis for image recognition and retrieval. Comput Vis Image Underst 121(Supplement C):86–99.  https://doi.org/10.1016/j.cviu.2014.01.008. http://www.sciencedirect.com/science/article/pii/S1077314214000150 CrossRefGoogle Scholar
  48. 48.
    Zhou X, Hu J, Lu J, Shang Y, Guan Y (2011) Kinship verification from facial images under uncontrolled conditions. In: Proceedings of the 19th ACM International Conference on Multimedia, MM ’11. ACM, New York, pp 953–956.  https://doi.org/10.1145/2072298.2071911
  49. 49.
    Zhou X, Shang Y, Yan H, Guo G (2016) Ensemble similarity learning for kinship verification from facial images in the wild. Inf Fusion 32(PB):40–48.  https://doi.org/10.1016/j.inffus.2015.08.006 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of LESIAUniversity of BiskraBiskraAlgeria
  2. 2.University of BiskraBiskraAlgeria
  3. 3.Center for Machine Vision and Signal AnalysisUniversity of OuluOuluFinland
  4. 4.Laboratory of LGEBUniversity of BiskraBiskraAlgeria
  5. 5.IEMN DOAE UMR CNRS 8520 LaboratoryPolytechnic University of Hauts-de-FranceFamarsFrance

Personalised recommendations