Advertisement

The region based MMTD energy function for image segmentation

  • Bing Han
  • Lixia Zhang
  • Xinbo Gao
Article
  • 50 Downloads

Abstract

This paper presents a region-based model based on measure of medium truth degree for image segmentation. Firstly, a new energy function based on measure of medium truth degree is constructed. To enhance the robustness against noise, a noise penalty term which is built by spatial distance measure is embedded to the conventional active contour energy function. Then local information is added to the internal and external energy term of the conventional active contour energy function to deal with intensity inhomogeneity images. Finally, to obtain more accurate and smoother boundary, a new stop function is introduced into the boundary smooth term of the conventional active contour energy function. Experiments results demonstrate that relatively complete and accurate boundaries can be obtained by the proposed model compared with the state-of-art methods on aurora images, images with intensity inhomogeneity, images with multi-objects, natural images, medical images.

Keywords

Graph cuts Measure of medium truth degree Local information Spatial distance measure 

Notes

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant U1605252, in part by the National Key Research and Development Program of China under Grant 2016QY01W0200, the National Natural Science Foundation of China(41031064; 61572384; 61432014), China’s postdoctoral fund first-class funding (2014M560752), Shanxi province postdoctoral science fund, the central university basic scientific research business fee (JBG150225), ShanXi Key Technologies Research Program(2017KW-017).

References

  1. 1.
    Ali H, Rada L, Badshah N (2018) Image segmentation for intensity inhomogeneity in presence of high noise. IEEE Trans Image Process 27(8):3729–3738MathSciNetCrossRefGoogle Scholar
  2. 2.
    Andersson T, Lathen G, Lenz R et al (2013) Modified gradient search for level set based image segmentation[J]. IEEE Trans Image Process 22(2):621MathSciNetCrossRefGoogle Scholar
  3. 3.
    Arbelaez P, Maire M, Fowlkes C et al (2011) Contour detection and hierarchical image segmentation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence 33(5):898–916CrossRefGoogle Scholar
  4. 4.
    Boykov YY, Jolly MP (2001) Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images[C]. In: IEEE international conference on computer vision. IEEE Computer Society, p 105Google Scholar
  5. 5.
    Boykov Y, Kolmogorov V (2004) An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence 26(9):1124CrossRefGoogle Scholar
  6. 6.
    Cao C, Newman TS, Germany GA (2009) New shape-based auroral oval segmentation driven by LLS-RHT[J]. Pattern Recogn 42(5):607–618CrossRefGoogle Scholar
  7. 7.
    Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours[J]. Int J Comput Vis 22(1):61–79CrossRefGoogle Scholar
  8. 8.
    Chan TF, Vese LA (2001) Active contours without edges[M]. IEEE Press, pp 266–177Google Scholar
  9. 9.
    Chowdhury K, Chaudhuri D, Pal AK (2017) A new image segmentation technique using bi-entropy function minimization[J]. Multimedia Tools and Applications 1:1–27Google Scholar
  10. 10.
    Ciesielski KC, Udupa JK, Falcão AX et al (2012) Fuzzy connectedness image segmentation in graph cut formulation: a linear-time algorithm and a comparative analysis[J]. Journal of Mathematical Imaging & Vision 44(3):375–398MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cox IJ (1998) A maximum-flow formulation of the N-camera stereo correspondence problem[C]. In: International conference on computer vision. IEEE Computer Society, p 492Google Scholar
  12. 12.
    Fawcett T (2005) An introduction to ROC analysis[J]. Pattern Recogn Lett 27(8):861–874CrossRefGoogle Scholar
  13. 13.
    Gao X, Wang B, Tao D et al (2011) A Relay level set method for automatic image segmentation[J]. IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics A Publication of the IEEE Systems Man & Cybernetics Society 41(2):518–525CrossRefGoogle Scholar
  14. 14.
    Gelas A, Bernard O, Friboulet D et al (2007) Compactly supported radial basis functions based collocation method for level-set evolution in image segmentation[J]. IEEE Trans Image Process 16(7):1873–1887MathSciNetCrossRefGoogle Scholar
  15. 15.
    Germany GA, Parks GK, Ranganath H et al (1998) Analysis of auroral morphology: substorm precursor and onset on January 10, 1997[J]. Geophys Res Lett 25(15):3043–3046CrossRefGoogle Scholar
  16. 16.
    Goldstein GB (1973) False-alarm regulation in log-Normal and Weibull clutter[J]. Aerospace & Electronic Systems IEEE Transactions on AES-9(1):84–92CrossRefGoogle Scholar
  17. 17.
    Gorelick L, Blank M, Shechtman E et al (2007) Actions as space-time shapes[J]. IEEE transactions on Pattern Analysis & Machine. Intelligence 29(12):2247–2253Google Scholar
  18. 18.
    Greig DM, Porteous BT, Seheult AH (1989) Exact maximum a posteriori estimation for binary images[J]. J R Stat Soc 51(2):271–279Google Scholar
  19. 19.
    Heath M, Bowyer K, Kopans D et al (2000) The digital database for screening mammography[J]. Digital mammography:431–434Google Scholar
  20. 20.
    Hung CC, Germany G (2003) K-means and iterative selection algorithms in image segmentation[C]. IEEE SoutheastconGoogle Scholar
  21. 21.
    Jaccard P (1901) Étude comparative de la distribution florale dans une portion des Alpes et des Jura[J]. Bull Soc Vaudoise Sci Na 37:547–579Google Scholar
  22. 22.
    Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models[J]. Int J Comput Vis 1(4):321–331CrossRefGoogle Scholar
  23. 23.
    Kolmogorov V, Zabin R (2004) What energy functions can be minimized via graph cuts? [J]. Pattern Analysis & Machine Intelligence IEEE Transactions on 26(2):147–159CrossRefGoogle Scholar
  24. 24.
    Li X, Ramachandran R, He M et al (2004) Comparing different thresholding algorithms for segmenting auroras[C]. In: International conference on information technology: coding and computing. Proceedings. Itcc. IEEE, pp 594–601Google Scholar
  25. 25.
    Li C, Xu C, Gui C et al (2005) Level set evolution without re-initialization: a new Variational formulation[C]. In: Computer vision and pattern recognition, 2005. CVPR 2005. IEEE computer society conference on. IEEE Xplore, pp 430–436Google Scholar
  26. 26.
    Li C, Kao CY, Gore JC et al (2008) Minimization of region-scalable fitting energy for image segmentation[J]. IEEE Trans Image Process 17(10):1940–1949MathSciNetCrossRefGoogle Scholar
  27. 27.
    Li C, Xu C, Gui C et al (2010) Distance regularized level set evolution and its application to image segmentation[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society 19(12):3243MathSciNetCrossRefGoogle Scholar
  28. 28.
    Lin Y, Wu L (2018) Improved abrasive image segmentation method based on bit-plane and morphological reconstruction[J]. Multimedia Tools and Applications:1–14Google Scholar
  29. 29.
    Liu H, Gao X, Han B et al (2013) An automatic MSRM method with a feedback based on shape information for Auroral oval segmentation[M]. Intelligence science and big data engineering. Springer Berlin Heidelberg, pp 748–755Google Scholar
  30. 30.
    Ouyang C, Ding H (2007) Segmentation of masses in mammograms[J]. Beijing Biomedical EngineeringGoogle Scholar
  31. 31.
    Rad AE, Rahim MSM, Kolivand H et al (2007) Morphological region-based initial contour algorithm for level set methods in image segmentation[J]. Multimedia Tools and Applications 76(2):2185–2201CrossRefGoogle Scholar
  32. 32.
    Song M, Tao D, Chen C et al (2010) Color to gray: visual Cue preservation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence 32(9):1537CrossRefGoogle Scholar
  33. 33.
    Suckling J (1994) The mammographic image analysis society digital mammogram database. Digital mammography[C]. In: International congress. Elsevier ScienceGoogle Scholar
  34. 34.
    Torr MR, Torr DG, Zukic M et al (1995) A far ultraviolet imager for the international solar-terrestrial physics Mission[J]. Space Sci Rev 71(1-4):329–383CrossRefGoogle Scholar
  35. 35.
    Vicente S, Kolmogorov V, Rother C (2008) Graph cut based image segmentation with connectivity priors[C]. In: Computer vision and pattern recognition, 2008. CVPR 2008. IEEE conference on, vol 8. IEEE, pp 1–8Google Scholar
  36. 36.
    Vickery BC (1979) Reviews: van Rijsbergen, CJ information retrieval. 2nd edn. London, Butterworths, I978. 208pp[J]. J Librariansh 11(3):237–237CrossRefGoogle Scholar
  37. 37.
    Wujia Z, Xi-An X (1985) Propositional Calculus system of medium logic (l)[J]. Nature Magazine 8(4):315–316MathSciNetGoogle Scholar
  38. 38.
    Xiao XA, Zhu WJ (1988) A system of medium axiomatic set theory[j]. SCIENCE CHINA Math 31(11):1320–1335MathSciNetzbMATHGoogle Scholar
  39. 39.
    Xing C, Zhang Y, Wang X et al (2016) An environmental psychology approach: measuring the individual's cognitive and affective response to ecological designed military camp[C]. In: IEEE international conference on Multimedia & Expo Workshops. IEEE, pp 1–6Google Scholar
  40. 40.
    Yang T, Zhou N, Yang X (2011) An image segmentation method based on measure of medium truth degree[C]. In: International conference on information science and technology. IEEE, pp 643–646Google Scholar
  41. 41.
    Yang X, Gao X, Li J et al (2014) A shape-initialized and intensity-adaptive level set method for auroral oval segmentation[J]. Inf Sci 277(2):794–807CrossRefGoogle Scholar
  42. 42.
    Yang X, Gao X, Tao D et al (2014) Improving level set method for fast Auroral oval segmentation[J]. IEEE Trans Image Process 23(7):2854–2865MathSciNetCrossRefGoogle Scholar
  43. 43.
    Yang X, Gao X, Tao D et al (2015) An efficient MRF embedded level set method for image segmentation[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society 24(1):9MathSciNetCrossRefGoogle Scholar
  44. 44.
    Zehiry NE, Xu S, Sahoo P et al (2007) Graph cut optimization for the Mumford-Shah model[C]. In: The seventh IASTED international conference on visualization, imaging and image processing. ACTA Press, pp 182–187Google Scholar
  45. 45.
    Zhou N, Yang T, Zhang S (2014) An improved FCM medical image segmentation algorithm based on MMTD[J]. Computational and mathematical methods in medicine 2014(1):690349MathSciNetzbMATHGoogle Scholar
  46. 46.
    Zhou Y, Shi WR, Chen W et al (2015) Active contours driven by localizing region and edge-based intensity fitting energy with application to segmentation of the left ventricle in cardiac CT images[J]. Neurocomputing 156(C):199–210Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electronic EngineeringXidian UniversityXi’anChina

Personalised recommendations