Advertisement

Class-adapted local fisher discriminant analysis to reduce highly-dimensioned data on commodity hardware: application to hyperspectral images

  • Rania ZaatourEmail author
  • Sonia Bouzidi
  • Ezzeddine Zagrouba
Article
  • 12 Downloads

Abstract

Local Fisher Discriminant Analysis (LFDA) is a supervised feature extraction technique that proved to be efficient in reducing several types of data. However, it depends on the number of samples per class in a way that can lead, when classes are too large, to a consumption of all the memory of a commodity hardware, or to a disability to even run. To work around this limit, we hereby propose to introduce a parameter that adapts LFDA to the data’s classes while accounting for the available resources on the used machine. In fact, according to this parameter, LFDA will consider a larger class as a set of smaller sub-classes and will process these latter instead of the larger one. We are calling our proposed optimization the class-adapted LFDA, noted caLFDA. We also propose a Python implementation of LFDA and prove it more effective than the existent MATLAB implementation. To assess the efficiency of caLFDA, we applied it to reduce several hyperspectral images and compared the results of classifying the reduced images to the ones we get when using the original LFDA to reduce the data. When the hyperspectral images are too large for LFDA to be able to reduce them, we compare caLFDA’s results to the ones we get with the most commonly used Principle Component Analysis (PCA).

Keywords

Local fisher discriminant analysis Dimensionality reduction Feature extraction Commodity hardware Python Hyperspectral image classification 

Notes

References

  1. 1.
    Carbonnelle P (2018) Pypl: Popularity of programming language. http://pypl.github.io/PYPL.html. Accessed: 2018-03-08
  2. 2.
    Cass S (2017) Ieee spectrum: The 2017 top programming languages. https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages. Accessed: 2018-03-08
  3. 3.
    Chen HL, Liu DY, Yang B, Liu J, Wang G (2011) A new hybrid method based on local fisher discriminant analysis and support vector machines for hepatitis disease diagnosis. Expert Syst Appl 803(9):11, 796–11CrossRefGoogle Scholar
  4. 4.
    Dalla Mura M, Benediktsson JA, Waske B, Bruzzone L (2010) Extended profiles with morphological attribute filters for the analysis of hyperspectral data. Int J Remote Sens 31(22):5975–5991CrossRefGoogle Scholar
  5. 5.
    Fangohr H (2004) A comparison of c, matlab, and python as teaching languages in engineering. Computational Science-ICCS 2004, pp 1210–1217Google Scholar
  6. 6.
    Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7(2):179–188CrossRefGoogle Scholar
  7. 7.
    Guo J, Chen H, Li Y (2014) Palmprint recognition based on local fisher discriminant analysis. JSW 9(2):287–292Google Scholar
  8. 8.
    Huang H, Li J, Liu J (2012) Enhanced semi-supervised local fisher discriminant analysis for face recognition. Futur Gener Comput Syst 28(1):244–253CrossRefGoogle Scholar
  9. 9.
    Li W, Prasad S, Fowler JE, Bruce LM (2012) Locality-preserving dimensionality reduction and classification for hyperspectral image analysis. IEEE Trans Geosci Remote Sens 50(4):1185–1198CrossRefGoogle Scholar
  10. 10.
    Li W, Prasad S, Fowler JE (2014) Hyperspectral image classification using gaussian mixture models and markov random fields. IEEE Geosci Remote Sens Lett 11 (1):153–157CrossRefGoogle Scholar
  11. 11.
    Liu Z, Wang J, Man J, Li Y, You X, Wang C (2012) Self-adaptive local fisher discriminant analysis for semi-supervised image recognition. International Journal of Biometrics 4(4):338–356CrossRefGoogle Scholar
  12. 12.
    Millman KJ, Aivazis M (2011) Python for scientists and engineers. Comput Sci Eng 13(2):9–12CrossRefGoogle Scholar
  13. 13.
    Niyogi X (2004) Locality preserving projections. In: Neural information processing systems, vol 16. MIT, p 153Google Scholar
  14. 14.
    O’Grady S (2018) The redmonk programming language rankings: January 2018. http://redmonk.com/sogrady/2018/03/07/language-rankings-1-18/. Accessed: 2018-03-08
  15. 15.
    Oliphant TE (2006) A guide to NumPy, vol 1. Trelgol Publishing, USAGoogle Scholar
  16. 16.
    Oliphant TE (2007) Scipy: Open source scientific tools for python. Comput Sci Eng 9:10–20CrossRefGoogle Scholar
  17. 17.
    Pedagadi S, Orwell J, Velastin S, Boghossian B (2013) Local fisher discriminant analysis for pedestrian re-identification. In: Proceedings of the ieee conference on computer vision and pattern recognition, pp 3318–3325Google Scholar
  18. 18.
    Rahulamathavan Y, Phan RCW, Chambers JA, Parish DJ (2013) Facial expression recognition in the encrypted domain based on local fisher discriminant analysis. IEEE Trans Affect Comput 4(1):83–92CrossRefGoogle Scholar
  19. 19.
    Shen P, Lu X, Liu L, Kawai H (2016) Local fisher discriminant analysis for spoken language identification. In: 2016 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 5825–5829Google Scholar
  20. 20.
    Song B, Li J, Dalla Mura M, Li P, Plaza A, Bioucas-Dias JM, Benediktsson JA, Chanussot J (2014) Remotely sensed image classification using sparse representations of morphological attribute profiles. IEEE Trans Geosci Remote Sens 52(8):5122–5136CrossRefGoogle Scholar
  21. 21.
    Stackoverflow developer survey results 2017: Most popular technologies - programming languages. https://insights.stackoverflow.com/survey/2017#most-popular-technologies. Accessed: 2018-03-08
  22. 22.
    Sugiyama M (2007) Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis. J Mach Learn Res 8:1027–1061zbMATHGoogle Scholar
  23. 23.
    Sugiyama M (2009) On computational issues of semi-supervised local fisher discriminant analysis. IEICE Trans Inf Syst 92(5):1204–1208CrossRefGoogle Scholar
  24. 24.
    Sugiyama M, Idé T, Nakajima S, Sese J (2008) Semi-supervised local fisher discriminant analysis for dimensionality reduction. In: Pacific-Asia conference on knowledge discovery and data mining. Springer, pp 333–344Google Scholar
  25. 25.
    The mathworks: Matlab (2018) https://www.mathworks.com. Accessed: 2018-03-08
  26. 26.
    Tiobe index for December 2017. https://www.tiobe.com/tiobe-index/. Accessed: 2018-03-08
  27. 27.
    Yu J (2011) Localized fisher discriminant analysis based complex chemical process monitoring. AIChE J 57(7):1817–1828CrossRefGoogle Scholar
  28. 28.
    Zaatour R, Bouzidi S, Zagrouba E (2017) Impact of feature extraction and feature selection techniques on extended attribute profile-based hyperspectral image classification. In: Proceedings of the 12th international joint conference on computer vision, imaging and computer graphics theory and applications - volume 4: VISAPP, (VISIGRAPP 2017). INSTICC, ScitePress, pp 579–586.  https://doi.org/10.5220/0006171305790586
  29. 29.
    Zaatour R, Bouzidi S, Zagrouba E (2018) Parallel and distributed local fisher discriminant analysis to reduce hyperspectral images on cloud computing architectures. In: International conference on advanced concepts for intelligent vision systems. Springer, pp 245–257Google Scholar
  30. 30.
    Zebin W u, Li Yonglong, Plaza Antonio, Li Jun, Xiao F u, Wei Zhihui (2016) Parallel and distributed dimensionality reduction of hyperspectral data on cloud computing architectures. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9(6):2270–2278CrossRefGoogle Scholar
  31. 31.
    Zhang S, Lei B, Chen A, Chen C, Chen Y (2010) Spoken emotion recognition using local fisher discriminant analysis. In: 2010 IEEE 10th international conference on Signal processing (ICSP). IEEE, pp 538–540Google Scholar
  32. 32.
    Zhang S, Zhao X, Lei B (2011) Facial expression recognition using local fisher discriminant analysis. Advances in computer science, environment, ecoinformatics, and education, pp 443–448Google Scholar
  33. 33.
    Zhang S, Zhao X, Lei B (2012) Facial expression recognition based on local binary patterns and local fisher discriminant analysis. WSEAS Transactions on Signal Processing 8(1):21–31Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Université de Tunis El Manar, Institut Supérieur d’Informatique El Manar, LR16ES06 Laboratoire de recherche en Informatique, Modélisation et Traitement de l’Information et de la Connaissance (LIMTIC)l’ArianaTunisia

Personalised recommendations