Augmented reality application assessment for disseminating rock art

  • Silvia Blanco-Pons
  • Berta Carrión-Ruiz
  • José Luis Lerma


Currently, marker-based tracking is the most used method to develop augmented reality (AR) applications (apps). However, this method cannot be applied in some complex and outdoor settings such as prehistoric rock art sites owing to the fact that the usage of markers is restricted on site. Thus, natural feature tracking methods have to be used. There is a wide range of libraries to develop AR apps based on natural feature tracking. In this paper, a comparative study of Vuforia and ARToolKit libraries is carried out, analysing factors such as distance, occlusion and lighting conditions that affect user experience in both indoor and outdoor environments, and eventually the app developer. Our analysis confirms that Vuforia’s user experience indoor is better, faster and flicker-free whether the images are properly enhanced, but it does not work properly on site. Therefore, the development of AR apps for complex outdoor environments such as rock art sites should be performed with ARToolKit.


Archaeology Augmented reality (AR) Mobile application (app) Markerless tracking ARToolKit Vuforia 



The authors gratefully acknowledge the support from the Spanish Ministerio de Economía y Competitividad to the project HAR2014-59873-R. Similarly, the authors want to express their gratitude to the General Directorate of Culture and Heritage, Conselleria d'Educació, Investigació, Cultura i Esport, Generalitat Valenciana for letting us access and carry out research at the archaeological site.


  1. 1.
    Alahi A., Ortiz R., Vandergheynst P (2012) FREAK: fast retina keypoint. Comput Vis Pattern Recognit 510–517 . doi:
  2. 2.
    Amin D, Govilkar S (2015) Comparative study of augmented reality Sdk’S. Int J Comput Sci Appl 5:11–26. Google Scholar
  3. 3.
    ARCore ARCore - Google Developer | ARCore | Google Developers. Accessed 26 Jun 2018
  4. 4.
    ARKit ARKit - Apple Developer. Accessed 26 Jun 2018
  5. 5.
    ARToolkit (2017) ARToolkit. Accessed 2 Oct 2017
  6. 6.
    ARToolkit (2017) About. Accessed 11 Apr 2017
  7. 7.
    ARToolkit (2017) Documentation. Accessed 12 Apr 2017
  8. 8.
    ArUco ArUco: A minimal library for Augmented Reality applications based on OpenCV | Aplicaciones de la Visión Artificial. Accessed 19 Apr 2018
  9. 9.
    Azuma R (1997) A survey of augmented reality. Presence Teleoperators Virt Environ 6:355–385 . doi: Scholar
  10. 10.
    Azuma R, Baillot Y, Feiner S et al (2001) Recent advances in augmented reality. Ieee Comput Graph Appl 34–47. doi:
  11. 11.
    Blanco-Novoa O, Fernandez-Carames TM, Fraga-Lamas P, Vilar-Montesinos M (2018) A practical evaluation of commercial industrial augmented reality systems in an industry 4.0 shipyard. IEEE Access 6:1–1. CrossRefGoogle Scholar
  12. 12.
    Blanco-Pons S, Carrión-Ruiz B, Lerma JL (2016) Review of augmented reality and virtual reality techniques in rock art. Proc 8th Int Congress Archaeol Comput Graph Cult Herit Innov ‘ARQUEOLÓGICA 2.0L: 176–183Google Scholar
  13. 13.
    Brancati N, Caggianese G, Frucci M et al (2017) Experiencing touchless interaction with augmented content on wearable head-mounted displays in cultural heritage applications. Pers Ubiquitous Comput 21:203–217. CrossRefGoogle Scholar
  14. 14.
    Cagalaban G, Kim S (2010) Multiple object tracking in unprepared environments using combined feature for augmented reality applications. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  15. 15.
    Camera-Calibration Camera Calibration App for Android [ARToolkit]. Accessed 16 Oct 2017
  16. 16.
    Carmigniani J, Furht B, Anisetti M et al (2011) Augmented reality technologies, systems and applications. Multimed Tools Appl 51:341–377. CrossRefGoogle Scholar
  17. 17.
    Carrión-Ruiz B, Blanco-Pons S, Lerma JL (2016) Digital image analysis of the visible region through simulation of rock art paintings. Proc 8th Int Congress Archaeol Comput Graph, Cult Heritage Innov ‘ARQUEOLÓGICA 2.0.’: 169–175Google Scholar
  18. 18.
    Chen CY, Chang BR, Sen HP (2014) Multimedia augmented reality information system for museum guidance. Pers Ubiquitous Comput 18:315–322. CrossRefGoogle Scholar
  19. 19.
    CRYENGINE CRYENGINE | The complete solution for next generation game development by Crytek. Accessed 7 Jun 2017
  20. 20.
    Domingo I, Carrión B, Blanco S, Lerma JL (2015) Evaluating conventional and advanced visible image enhancement solutions to produce digital tracings at el Carche rock art shelter. Digit Appl Archaeol Cult Herit 2:79–88. Google Scholar
  21. 21.
    Dos Santos AB, Dourado JB, Bezerra A (2016) ARToolkit and Qualcomm Vuforia: An Analytical Collation. Proc - 18th Symp Virt Augment Real SVR 2016:229–233. Google Scholar
  22. 22.
    DroidAR (2017) DroidAR by bitstars. Accessed 10 Dec 2017
  23. 23.
    Engine U (2017) Unreal Engine. Accessed 10 Oct 2017
  24. 24.
    Fiala M (2005) ARTag, a fiducial marker system using digital techniques. Proc IEEE Comput Soc Conf Comput Vis Pattern Recogn 2:590–596. Google Scholar
  25. 25.
    Fischer J, Eichler M, Bartz D, Straßer W (2007) A hybrid tracking method for surgical augmented reality. Comput Graph 31:39–52. CrossRefGoogle Scholar
  26. 26.
    González C, Vallejo D, Albusac J, Castro J (2011) Realidad Aumentada. Un enfoque práctico con ARToolKit y Blender. 2–120Google Scholar
  27. 27.
    Gutierrez JM, Molinero MA, Soto-Martín O, Medina CR (2015) Augmented reality technology spreads information about historical graffiti in temple of Debod. Procedia Comput Sci 75:390–397. CrossRefGoogle Scholar
  28. 28.
    Haladová ZB, Szemzö R, Kovačovský T, Žižka J (2015) Utilizing Multispectral Scanning and Augmented Reality for Enhancement and Visualization of the Wooden Sculpture Restoration Process. Procedia Comput Sci 67:340–347. CrossRefGoogle Scholar
  29. 29.
    Jamali SS, Shiratuddin MF, Wong KW, Oskam CL (2015) Utilising mobile-augmented reality for learning human anatomy. Procedia - Soc Behav Sci 197:659–668. CrossRefGoogle Scholar
  30. 30.
    Khan D, Ullah S, Rabbi I (2015) Factors affecting the design and tracking of ARToolKit markers. Comput Stand Interf 41:56–66. CrossRefGoogle Scholar
  31. 31.
    Khan D, Ullah S, Yan D et al (2018) Robust tracking through the design of high quality fiducial markers: an optimization tool for ARToolKit. IEEE Access 4:22421–22433. CrossRefGoogle Scholar
  32. 32.
    Kim SL, Suk HJ, Kang JH, et al (2014) Using unity 3D to facilitate mobile augmented reality game development. Internet things (WF-IoT), 2014 IEEE World Forum 21–26 . doi:
  33. 33.
    Kounavis CD, Kasimati AE, Zamani ED (2012) Enhancing the tourism experience through mobile augmented reality: challenges and prospects. Int J Eng Bus Manag 4:1–6. CrossRefGoogle Scholar
  34. 34.
    La Delfa GC, Monteleone S, Catania V et al (2016) Performance analysis of visualmarkers for indoor navigation systems. Front Inf Technol Electron Eng 17:730–740. CrossRefGoogle Scholar
  35. 35.
    Liu S, Ge S, Yu H (2016) Research on Robustness recognition algorithms in augmented reality. 3rd Int Conf Inf Sci Control Eng: 547–552. doi:
  36. 36.
    Lowe DG (2004) Distinctive image features from scale invariant keypoints. Int J Comput Vis 60:91–11020042. CrossRefGoogle Scholar
  37. 37.
    Lytridis C, Tsinakos A, Kazanidis I (2018) ARTutor—an augmented reality platform for interactive distance learning. Educ Sci 8:6. CrossRefGoogle Scholar
  38. 38.
    Marchand E, Uchiyama H, Spindler F et al (2016) Pose estimation for augmented reality : a hands-on survey. IEEE Trans Vis Comput Graph 22:2633–2651. CrossRefGoogle Scholar
  39. 39.
    Martínez R, Villaverde V (2002) La cova dels cavalls en el Barranc de la ValltortaGoogle Scholar
  40. 40.
    Marto AGR, Sousa AA, de Gonçalves A (2017) DinofelisAR demo augmented reality based on natural features. 12a Conferência Ibérica Sist e Tecnol Informação, Lisboa 64:852–861. Google Scholar
  41. 41.
    Moreels P, Perona P (2007) Evaluation of feature detectors and descriptors based on 3D objects. Int J Comput Vis 73:263–284. CrossRefGoogle Scholar
  42. 42.
    Pierdicca R, Frontoni E, Zingaretti P et al (2015) Making visible the invisible. augmented reality visualization for 3D reconstructions of archaeological sites. Augment Virt Real Sec Int Conf AVR 2015 9254:25–37. Google Scholar
  43. 43.
    Rabbi I, Ullah S, Javed M, Zen K (2014) Analysis of ARToolKit fiducial markers attributes for robust tracking. 1st Int Conf Recent Trends Inf Commun Technol Anal 281–290Google Scholar
  44. 44.
    Radkowski R, Oliver J (2013) Natural feature tracking augmented reality for on-site assembly assistance systems. In: Shumaker R (ed) Virtual, Augmented and Mixed Reality. Systems and Applications. VAMR 2013. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, pp 281–290Google Scholar
  45. 45.
    Ridel B, Reuter P, Laviole J et al (2014) The revealing flashlight: interactive spatial augmented reality for detail exploration of cultural heritage artifacts. J Comput Cult Herit 7(6):1–6:18. CrossRefGoogle Scholar
  46. 46.
    Seo J, Shim J, Choi JH, et al (2011) Enhancing marker-based AR technology. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 6773 LNCS:97–104 . doi:
  47. 47.
    Seo J, Shim J, Choi JH et al (2011) Enhancing marker-based AR technology. In: International conference on virtual and mixed reality. virtual and mixed reality - new trends. Springer, Berlin, Heidelberg, pp 97–104CrossRefGoogle Scholar
  48. 48.
    Siltanen S (2015) Diminished reality for augmented reality interior design. Vis Comput 33:1–16. CrossRefGoogle Scholar
  49. 49.
    Sörös G, Seichter H, Rautek P, Gröller E (2011) Augmented visualization with natural feature tracking. Proc 10th Int Conf Mob Ubiquitous Multimed 4–12. doi:
  50. 50.
    Uchiyama H, Marchand E (2012) Object detection and pose tracking for augmented reality: recent approaches. 18th Korea-Japan Jt Work Front Comput Vis 1–8Google Scholar
  51. 51.
    Unity Unity. Accessed 12 Oct 2017
  52. 52.
    Vuforia (2017) Vuforia. Accessed 2 Oct 2017
  53. 53.
    Vuforia (2017) Vuforia-VuMark. Accessed 4 Apr 2017
  54. 54.
    Vuforia (2017) Image targets. Accessed 11 Apr 2017
  55. 55.
    Wang H, Qin J, Zhang F (2015) A new interaction method for augmented reality based on ARToolKit. 2015 8th Int Congr Image Signal Process 578–583. doi:
  56. 56.
    Wang G, Wang B, Zhong F et al (2015) Global optimal searching for textureless 3D object tracking. Vis Comput 31:979–988. CrossRefGoogle Scholar
  57. 57.
    Wu S, Oerlemans A, Bakker EM, Lew MS (2017) A comprehensive evaluation of local detectors and descriptors. Signal Process Image Commun 59:150–167. CrossRefGoogle Scholar
  58. 58.
    Xu Y, Wu Y, Zhou H, View M (2018) Multi-scale Voxel Hashing and Efficient 3D Representation for Mobile Augmented Reality. Cvpr 1618–1625 . doi:

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Cartographic Engineering, Geodesy and PhotogrammetryUniversitat Politècnica de València, Photogrammetry & Laser Scanning Research Group (GIFLE)ValenciaSpain

Personalised recommendations