Advertisement

Visual tracking using structural local DCT sparse appearance model with occlusion detection

  • B. K. Shreyamsha Kumar
  • M. N. S. Swamy
  • M. Omair Ahmad
Article
  • 64 Downloads

Abstract

In this paper, a structural local DCT sparse appearance model with occlusion detection is proposed for visual tracking in a particle filter framework. The energy compaction property of the 2D-DCT is exploited to reduce the size of the dictionary as well as that of the candidate samples so that the computational cost of l1-minimization can be lowered. Further, a holistic image reconstruction procedure is proposed for robust occlusion detection and used for appearance model update, thus avoiding the degradation of the appearance model in the presence of occlusion/outliers. Also, a patch occlusion ratio is introduced in the confidence score computation to enhance the tracking performance. Quantitative and qualitative performance evaluations on two popular benchmark datasets demonstrate that the proposed tracking algorithm generally outperforms several state-of-the-art methods.

Keywords

Visual tracking Local DCT sparse appearance model Holistic image reconstruction Reconstruction error Occlusion map Observation model update 

Notes

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada, the Regroupement Stratégique en Microsystèmes du Québec (ReSMiQ), and Ministère de l’Éducation, de l’Enseignement Supérieur et de la Recherche (MEESR) du Québec.

The authors would like to thank the authors of [3, 17, 20, 29, 36, 37, 38, 39, 41, 42] who made their codes available for comparison with the proposed method.

References

  1. 1.
    Adam A, Rivlin E, Shimshoni I (2006) Robust fragments-based tracking using the integral histogram. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 798–805Google Scholar
  2. 2.
    Babenko B, Yang MH, Belongie S (2009) Visual tracking with online multiple instance learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 983–990Google Scholar
  3. 3.
    Bao C, Wu Y, Ling H, Ji H (2012) Real time robust L1 tracker using accelerated proximal gradient approach. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1830–1837Google Scholar
  4. 4.
    Chen D, Liu Q, Sun M, Yang J (2008) Mining appearance models directly from compressed video. IEEE Trans Multimed 10(2):268–276CrossRefGoogle Scholar
  5. 5.
    Chen H, Zhang W, Zhao X, Tan m (2014) DCT representations based appearance model for visual tracking. In: Proceedings of the IEEE international conference on robotics and biometrics (ROBIO), pp 1614–1619Google Scholar
  6. 6.
    Comaniciu D, Ramesh V, Meer P (2003) Kernel-based object tracking. IEEE Trans Pattern Anal Mach Intell (PAMI) 25(5):564–577CrossRefGoogle Scholar
  7. 7.
    Dai P, Luo Y, Liu W, Li C, Xie Y (2013) Robust visual tracking via part-based sparsity model. In: Proceedings of the IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 1803–1806Google Scholar
  8. 8.
    Danelljan M, Häger G, Khan FS, Felsberg M (2015) Learning spatially regularized correlation filters for visual tracking. In: Proceedings of the IEEE international conference on computer vision (ICCV), pp 4310–4318Google Scholar
  9. 9.
    Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image process 15(12):3736–3745MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gao J, Zhang T, Yang X, Xu C (2017) Deep relative tracking. IEEE Trans Image Process 26(4):1845–1858MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gao J, Zhang T, Yang X, Xu C (2018) P2T: Part-to-target tracking via deep regression learning. IEEE Trans Image Process 27(6):3074–3086MathSciNetCrossRefGoogle Scholar
  12. 12.
    Grabner H, Leistner C, Bischof H (2008) Semi-supervised on-line boosting for robust tracking. In: Proceedings of European conference on computer vision (ECCV), pp 234–247Google Scholar
  13. 13.
    Hafed ZM, Levine MD (2001) Face recognition using the discrete cosine transform. Int J Comput Vis 43(3):167–188CrossRefzbMATHGoogle Scholar
  14. 14.
    He D, Gu Z, Cercone N (2009) Efficient image retrieval in DCT domain by hypothesis testing. In: Proceedings of the IEEE international conference on image processing (ICIP), pp 225–228Google Scholar
  15. 15.
    Henriques JF, Caseiro R, Martins P, Batista J (2015) High-speed tracking with kernelized correlation filters. IEEE Trans Pattern Anal Mach Intell (PAMI) 37 (3):583–596CrossRefGoogle Scholar
  16. 16.
    Isard M, Blake A (1998) Condensation: Conditional density propagation for visual tracking. Int J Comput Vis 29(1):5–28CrossRefGoogle Scholar
  17. 17.
    Jia X, Lu H, Yang MH (2012) Visual tracking via adaptive structural local sparse appearance model. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1822–1829Google Scholar
  18. 18.
    Kristan M, Leonardis A, Matas J, Felsberg M, Pflugfelder R (2016) The visual object tracking VOT2016 challenge results. In: Proceedings of European conference on computer vision (ECCV), pp 1–45Google Scholar
  19. 19.
    Li Y, Ai H, Yamashita T, Lao S, Kawade M (2008) Tracking in low frame rate video: a cascade particle filter with discriminative observers of different life spans. IEEE Trans Pattern Anal Mach Intell (PAMI) 30(10):1728–1740CrossRefGoogle Scholar
  20. 20.
    Li X, Dick A, Shen C, Hengel A, Wang H (2013) Incremental learning of 3d-DCT compact representations for robust visual tracking. IEEE Trans Pattern Anal Mach Intell (PAMI) 35(4):863–881CrossRefGoogle Scholar
  21. 21.
    Li H, Li Y, Porikli F (2016) Deeptrack: Learning discriminative feature representations online for robust visual tracking. IEEE Trans Image Process 25 (4):1834–1848MathSciNetCrossRefGoogle Scholar
  22. 22.
    Lin C, Pun CM (2013) Tracking object using particle filter and DCT features. In: Proceedings of international conference on advances in computer science and engineering, pp 167–169Google Scholar
  23. 23.
    Mairal J, Bach F, Ponce J, Sapiro G (2010) Online learning for matrix factorization and sparse coding. J Mach Learn Res 11:19–60MathSciNetzbMATHGoogle Scholar
  24. 24.
    Mei X, Ling H (2009) Robust visual tracking using L1 minimization. In: Proceedings of the IEEE international conference on computer vision (ICCV), pp 1436–1443Google Scholar
  25. 25.
    Mei X, Ling H, Wu Y, Blasch E, Bai L (2011) Minimum error bounded efficient L1 tracker with occlusion detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1257–1264Google Scholar
  26. 26.
    Ou W, Yuan D, Liu Q, Cao Y (2018) Object tracking basedon online representative sample selection via non-negative least square. Multimedia Tools Appl 77(9):10569–10587CrossRefGoogle Scholar
  27. 27.
    Pennerbaker W, Mithchell J (1992) JPEG: Still image data compression standard. Springer Science & Business Media, BerlinGoogle Scholar
  28. 28.
    Qu P (2014) Visual tracking with fragments-based PCA sparse representation. Int J Signal Process, Image Process Pattern Recogn 7(2):23–34Google Scholar
  29. 29.
    Ross DA, Lim J, Lin RS, Yang MH (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77:125–141CrossRefGoogle Scholar
  30. 30.
    Shreyamsha Kumar BK, Swamy MNS, Omair Ahmad M (2013) Multiresolution DCT decomposition for multifocus image fusion. In: Proceedings of the IEEE Canadian conference on electrical and computer engineering (CCECE), pp 1–4.  https://doi.org/10.1109/CCECE.2013.6567721
  31. 31.
    Shreyamsha Kumar BK, Swamy MNS, Omair Ahmad M (2015) Structural local DCT sparse appearance model for visual tracking. In: Proceedings of the IEEE international symposium on circuits and systems (ISCAS), pp 1194–1197.  https://doi.org/10.1109/ISCAS.2015.7168853
  32. 32.
    Shreyamsha Kumar BK, Swamy MNS, Omair Ahmad M (2016) Visual tracking via bilateral 2DPCA and robust coding. In: Proceedings of the IEEE Canadian conference on electrical and computer engineering (CCECE), pp 1–4.  https://doi.org/10.1109/CCECE.2016.7726647
  33. 33.
    Shreyamsha Kumar BK, Swamy MNS, Omair Ahmad M (2016) Weighted residual minimization in PCA subspace for visual tracking. In: Proceedings of the IEEE international symposium on circuits and systems (ISCAS), pp 986–989.  https://doi.org/10.1109/ISCAS.2016.7527408
  34. 34.
    Uzair M, Mahmood A, Mian AS (2013) Hyperspectral face recognition using 3d-DCT and partial least squares. In: Proceedings of British machine vision conference (BMVC), pp 1–10Google Scholar
  35. 35.
    Wang D, Lu H (2012) Object tracking via 2DPCA and l 1-regularization. Signal Process Lett 19(11):711–714CrossRefGoogle Scholar
  36. 36.
    Wang D, Lu H, Bo C (2015) Fast and robust object tracking via probability continuous outlier model. IEEE Trans Image Process 24(12):5166–5176MathSciNetCrossRefGoogle Scholar
  37. 37.
    Wang D, Lu H, Bo C (2015) Visual tracking via weighted local cosine similarity. IEEE Trans Cybern 45(9):1838–1850CrossRefGoogle Scholar
  38. 38.
    Wang D, Lu H, Yang MH (2013) Online object tracking with sparse prototypes. IEEE Trans Image Process 22(1):314–325MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Wang N, Yeung DY (2013) Learning a deep compact image representation for visual tracking. In: Proceedings of advances in neural information processing systems (NIPS), pp 809–817Google Scholar
  40. 40.
    Wang F, Zhang J, Guo Q, Liu P, Tu D (2015) Robust visual tracking via discriminative structural sparse feature. In: Proceedings of the Chinese conference on image and graphics technologies, pp 438–446Google Scholar
  41. 41.
    Wang D, Lu H, Xiao Z, Yang MH (2015) Inverse sparse tracker with a locally weighted distance metric. IEEE Trans Image Process 24(9):2646–2657MathSciNetCrossRefGoogle Scholar
  42. 42.
    Wang D, Lu H, Yang MH (2016) Robust visual tracking via least soft-threshold squares. IEEE Trans Circ Syst Video Technol 26(9):1709–1721CrossRefGoogle Scholar
  43. 43.
    Wright J, Yang A, Ganesh A, Sastry S, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell (PAMI) 31(2):210–227CrossRefGoogle Scholar
  44. 44.
    Wu Y, Lim J, Yang MH (2013) Online object tracking: a benchmark. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 2411–2418Google Scholar
  45. 45.
    Yang J, Yu K, Gong Y, Huang T (2009) Linear spatial pyramid matching using sparse coding for image classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1794–1801Google Scholar
  46. 46.
    Yang H, Shao L, Zheng F, Wang L, Song Z (2011) Recent advances and trends in visual tracking: a review. Neurocomputing 74(18):3823–3831CrossRefGoogle Scholar
  47. 47.
    You X, Li X, He Z, Zhang X (2015) A robust local sparse tracker with global consistency constraint. Signal Process 111:308–318CrossRefGoogle Scholar
  48. 48.
    Zhang T, Ghanem B, Liu S, Ahuja N (2012) Robust visual tracking via multi-task sparse learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 2042–2049Google Scholar
  49. 49.
    Zhang H, Tao F, Yang G (2015) Robust visual tracking based on structured sparse representation model. Multimed Tools Appl 74(3):1021–1043CrossRefGoogle Scholar
  50. 50.
    Zhang T, Bibi A, Ghanem B (2016) In defense of sparse tracking: Circulant sparse tracker. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 3880–3888Google Scholar
  51. 51.
    Zhang T, Xu C, Yang MH (2017) Multi-task correlation particle filter for robust object tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 4819–4827Google Scholar
  52. 52.
    Zhang T, Liu S, Xu C, Liu B, Yang MH (2018) Correlation particle filter for visual tracking. IEEE Trans Image Process 27(6):2676–2687MathSciNetCrossRefGoogle Scholar
  53. 53.
    Zhang T, Xu C, Yang MH (2018) Learning multi-task correlation particle filters for visual tracking. IEEE Trans Pattern Anal Mach Intell (PAMI):1–14.  https://doi.org/10.1109/TPAMI.2018.2797062
  54. 54.
    Zhong Y, Zhang H, Jain AK (2000) Automatic caption localization in compressed video. IEEE Trans Pattern Anal Mach Intell (PAMI) 22(4):385–392CrossRefGoogle Scholar
  55. 55.
    Zhuang B, Wang L, Lu H (2016) Visual tracking via shallow and deep collaborative model. Neurocomputing 218:61–71CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringConcordia UniversityMontrealCanada

Personalised recommendations