Multimedia Tools and Applications

, Volume 78, Issue 6, pp 7005–7027 | Cite as

Encrypted separable reversible watermarking with authentication and error correction

  • C. Vinoth KumarEmail author
  • V. Natarajan
  • K. Nirmala
  • T. Balasubramanian
  • K. Ramnarayan Rao
  • S. Krishnan


Reversible Watermarking (RW) in encrypted images helps to reconstruct the original content and embedded data without distortion while protecting the owner’s privacy. The security and integrity of embedded data is very much demanding. In this paper, an efficient RW method is proposed that recovers the embedded data from the marked encrypted color palette images in the presence of attacks. In this method, embeddable color-triples are constructed by employing color partitioning. Next, the cryptographic SHA-256 hash and Bose–Chaudhuri–Hocquenghem (BCH) are applied over the secret information to ensure the authenticity and integrity. The hash authenticated secret data is embedded into the encrypted color palette image. The secret data is extracted using the separable color partitioning method and authenticated with cryptographic hash function. The proposed method has higher embedding capacity when compared to other relative schemes. The BCH codes helps to recover the secret data and cover image in the presence of noise and attacks.


Color Palette Image Color Partitioning Error Correcting Codes Reversible Watermarking SHA-256 



  1. 1.
    Alattar AM (2004) Reversible Watermark Using the Difference Expansion of a Generalized Integer Transform. IEEE Trans Image Process 13(8):1147–1156. MathSciNetCrossRefGoogle Scholar
  2. 2.
    Barton JM 1997 Method and apparatus for embedding authentication information within digital data. US Patent 5646997Google Scholar
  3. 3.
    Caldelli R, Filippini F, Becarelli R (2010) Reversible Watermarking Techniques: An Overview and a Classification. EURASIP J Inf Secur 2010(2):1–19 10.1155/2010/134546Google Scholar
  4. 4.
    Chao H-M, Hsu C-M, Miaou S-G (2002) A data-hiding Technique with authentication, integration, and confidentiality for electronic patient records. IEEE Trans Inf Technol Biomed 6(1):46–53. CrossRefGoogle Scholar
  5. 5.
    Chen Y-H, Huang H-C, Lin C-C (2016) Block-based reversible data hiding with multi-round estimation and difference alteration. Multimedia Tools and Applications 75(21):13679–13704. CrossRefGoogle Scholar
  6. 6.
    Fallahpour M (2008) Reversible image data hiding based on gradient adjusted prediction. IEICE Electronics Express 5(20):870–876 10.1587/elex.5.870CrossRefGoogle Scholar
  7. 7.
    Feng J-B, Lin I-C, Tsai C-S, Chu Y-P (2006) Reversible Watermarking : Current status and key issues. International Journal of Network Security 2:161–171 Scholar
  8. 8.
    Fontaine C, Galand F (2008) How Reed-Solomon Codes Can Improve Steganographic Schemes. EURASIP J Inf Secur 2009:274845.1–274845.10. CrossRefGoogle Scholar
  9. 9.
    Guruswami V, Sudan M (1999) Improved decoding of Reed Solomon and Algebraic-Geometry Codes. IEEE Trans Inf Theory 45(6):1757–1767. MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hong W, Chen T, Wu H (2012) An Improved Reversible Data Hiding in Encrypted Images using Side Match. IEEE Signal Processing Letters 19(4):199–202. CrossRefGoogle Scholar
  11. 11.
    Khan A, Siddiqa A, Munib S, Malik SA (2014) A recent survey of reversible watermarking techniques. Inf Sci 279:251–272. CrossRefGoogle Scholar
  12. 12.
    Kim C, Shin D, Lu L, Yang C-N (2016) Lossless data hiding for absolute moment block truncation coding using histogram modification. J Real-Time Image Proc 14:101–114. CrossRefGoogle Scholar
  13. 13.
    Kim C, Shin D, Shin D (2011) Data hiding in a halftone image using hamming code (15, 11). Intelligent Information and Database Systems 6592:372–381. CrossRefGoogle Scholar
  14. 14.
    Lee S-K, Suh Y-H, Ho Y-S (2006) Reversible Image Authentication Based on Watermarking. Proceedings of the IEEE International Conference Multimedia Expo:1321–1324 Scholar
  15. 15.
    Lee J-H, Wu M-Y (2008) Reversible Data Hiding Scheme for Color Image Protection Based on Palette Color Replacement. Third International Conference on Innovative Computing Information and Control:1–4.
  16. 16.
    Li X, Niu J, Khan MK, Liao J (2013) An enhanced smart card based remote user password authentication scheme. J Netw Comput Appl 36:1365–1371. CrossRefGoogle Scholar
  17. 17.
    Liao X, Yin J, Guo S, Li X, Sangaiah AK (2017) Medical JPEG image steganography based on preserving inter-block dependencies. Comput Electr Eng:1–10. CrossRefGoogle Scholar
  18. 18.
    Liao X, Zheng Q, Ding L (2017) Data embedding in digital images using critical functions. Signal Process Image Commun 58:146–156. CrossRefGoogle Scholar
  19. 19.
    Lien BK, Chen SK, Wang WS, King KP (2015) Dispersed Data Hiding using Hamming Code with Recovery Capability. Genetic and Evolutionary Computing 329:179–187. CrossRefGoogle Scholar
  20. 20.
    Lin C-H, Yeh Y-S, Chien S-P, Lee C-Y, Chien H-S (2011) Generalized Secure Hashing Algorithm: SHA-X. International Conference on Computer as a Tool:1–4.
  21. 21.
    Ma K, Zhang W, Zhao X, Li NYF (2013) Reversible Data Hiding in Encrypted Images by Reserving Room Before Encryption. IEEE Transactions on Information Forensics and Security 8(3):553–562. CrossRefGoogle Scholar
  22. 22.
    Ni Z, Shi Y-Q, Ansari N, Wei S (2006) Reversible Data Hiding. IEEE Transactions on Circuits and Systems for Video Technology 16(3):354–362. CrossRefGoogle Scholar
  23. 23.
    Prathap I, Natarajan V, Anitha R (2014) Hybrid robust watermarking for color images. Comput Electr Eng 40(3):920–930. CrossRefGoogle Scholar
  24. 24.
    Qian Z, Zhou H, Zhang X, Zhang W (2016) Separable Reversible Data Hiding in Encrypted JPEG Bitstreams. IEEE Transactions on Dependable and Secure Computing 99:1–13. CrossRefGoogle Scholar
  25. 25.
    Qin Z, Zhang X, Wang S (2014) Reversible Data Hiding in Encrypted JPEG bitstream. IEEE Transactions on Multimedia 16(5):1486–1491. CrossRefGoogle Scholar
  26. 26.
    Sabery MK, Yaghoobi M (2008) A New Approach for Image Encryption using Chaotic Logistic Map. International Conference on Advanced Computer Theory and Engineering:585–590.
  27. 27.
    Shi Y-Q, Li X, Zhang X, Wu H-T, Ma B (2016) Reversible Data Hiding: Advances in the Past Two Decades. IEEE Access 4:3210–3237. CrossRefGoogle Scholar
  28. 28.
    Solanki K, Jacobsen N, Madhow U, Manjunath BS, Chandrasekaran S (2004) Robust image-adaptive data hiding based on erasure and error correction. IEEE Trans Image Process 13(12):1627–1639. CrossRefGoogle Scholar
  29. 29.
    Thodi DM, Rodriguez JJ (2004) Prediction-error based reversible watermarking. Proc IEEE Int Conf Inf Process 3:1549–1552. CrossRefGoogle Scholar
  30. 30.
    Thodi DM, Rodríguez JJ (2007) Expansion Embedding Techniques for Reversible Watermarking. IEEE Trans Image Process 16(3):721–730. MathSciNetCrossRefGoogle Scholar
  31. 31.
    Tian J (2003) Reversible Data Embedding Using a Difference Expansion. IEEE Transactions on Circuits and Systems For Video Technology 13(8):890–896. CrossRefGoogle Scholar
  32. 32.
    Wu H-Z, Shi Y-Q, Wang H-X, Zhou L-N (2016) Separable Reversible Data Hiding for Encrypted Palette Images with Color Partitioning and Flipping Verification. IEEE Transactions on Circuits and Systems for Video Technology 27(8):1620–1631. CrossRefGoogle Scholar
  33. 33.
    Xu S, Wang Y (2010) A Novel Image Encryption Scheme based on a Nonlinear Chaotic Map. International Journal on Image, Graphics and Signal Processing 1:61–68CrossRefGoogle Scholar
  34. 34.
    Zhang X (2011) Reversible Data Hiding in Encrypted Image. IEEE Signal Processing Letters 18(4):255–258. CrossRefGoogle Scholar
  35. 35.
    Zhang X (2012) Separable Reversible Data Hiding in Encrypted Image. IEEE Transaction on Information Forensics and Security 7(2):826–832. CrossRefGoogle Scholar
  36. 36.
    Zhang X, Qian Z, Feng G, Ren Y (2014) Efficient Reversible Data Hiding in Encrypted Images. ournal of. Visual Communication and Image Representation 25(2):322–328. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • C. Vinoth Kumar
    • 1
    Email author
  • V. Natarajan
    • 2
  • K. Nirmala
    • 3
  • T. Balasubramanian
    • 1
  • K. Ramnarayan Rao
    • 1
  • S. Krishnan
    • 1
  1. 1.Department of Electronics & Communication EngineeringSSN College of EngineeringChennaiIndia
  2. 2.Department of Instrumentation Engineering, MIT CampusAnna UniversityChennaiIndia
  3. 3.Department of Biomedical EngineeringSSN College of EngineeringChennaiIndia

Personalised recommendations