Advertisement

Multimedia Tools and Applications

, Volume 78, Issue 5, pp 6385–6407 | Cite as

Structure extraction of images using anisotropic diffusion with directional second neighbour derivative operator

  • Mukhalad Al-nasrawiEmail author
  • Guang Deng
  • Waseem Waheed
Article

Abstract

The aim of structure extraction is to decompose an image into prominent structures and textures. In this paper, we present a new structure extraction method which has two main steps. First, high-frequency components due to the texture information in the original image are alleviated by a pre-smoothing filter. The result is then processed by a new anisotropic diffusion algorithm which uses a second neighbour derivative (SND) operator instead of the first neighbour derivative operator. We have demonstrated that the SND operator is better suited for applications such as texture smoothing. We have also presented a detailed study of the proposed method including the selection of the pre-smoothing filter, the number of iterations, and the scale parameter in the anisotropic diffusion algorithm. We have conducted experiments to compare the performance of the proposed method with those state-of-the-art structure extraction algorithms in a wide range of image editing applications such as: superpixel segmentation, texture transfer, contrast enhancement, and pencil drawing. We show that while the running speed of the proposed method is the fastest, its performance is competitive to other methods.

Keywords

Structure extraction filter Second neighbour derivative Superpixel segmentation Contrast enhancement Texture transfer 

Notes

References

  1. 1.
    Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süsstrunk S (2012) Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2282CrossRefGoogle Scholar
  2. 2.
    Al-nasrawi M, Deng G, Thai B (2018) Edge-aware smoothing through adaptive interpolation. SIViP 12(2):347–354CrossRefGoogle Scholar
  3. 3.
    Arnheim R (1956) Art and visual perception: a psychology of the creative eye. University of California Press, Berkeley & Los AngelesGoogle Scholar
  4. 4.
    Aujol JF, Gilboa G, Chan T, Osher S (2006) Structure-texture image decomposition—modeling, algorithms, and parameter selection. Int J Comput Vis 67 (1):111–136CrossRefGoogle Scholar
  5. 5.
    Bao L, Song Y, Yang Q, Yuan H, Wang G (2014) Tree filtering: efficient structure-preserving smoothing with a minimum spanning tree. IEEE Trans Image Process 23(2):555–569MathSciNetCrossRefGoogle Scholar
  6. 6.
    Buades A, Le TM, Morel JM, Vese LA (2010) Fast cartoon + texture image filters. IEEE Trans Image Process 19(8):1978–1986MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cho H, Lee H, Kang H, Lee S (2014) Bilateral texture filtering. ACM Trans Graph 33(4):128:1–128:8CrossRefGoogle Scholar
  8. 8.
    Deng G (2016) Edge-aware bma filters. IEEE Trans Image Process 25(1):439–454MathSciNetCrossRefGoogle Scholar
  9. 9.
    Du H, Jin X, Willis PJ (2016) Two-level joint local Laplacian texture filtering. Vis Comput 32(12):1537–1548CrossRefGoogle Scholar
  10. 10.
    Farbman Z, Fattal R, Lischinski D, Szeliski R (2008) Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans Graph 27 (3):67:1–10CrossRefGoogle Scholar
  11. 11.
    Gastal ESL, Oliveira MM (2011) Domain transform for edge-aware image and video processing. ACM Trans Graph 30(4):69:1–69:12CrossRefGoogle Scholar
  12. 12.
    Ham B, Cho M, Ponce J (2015) Robust image filtering using joint static and dynamic guidance. In: Proc IEEE conference on computer vision and pattern recognition, pp 4823–4831Google Scholar
  13. 13.
    He K, Sun J, Tang X (2013) Guided image filtering. IEEE Trans Pattern Anal Mach Intell 35(6):1397–1409CrossRefGoogle Scholar
  14. 14.
    Jeon J, Lee H, Kang H, Lee S (2016) Scale-aware structure-preserving texture filtering. In: Computer graphics forum, vol 35, pp 77–86CrossRefGoogle Scholar
  15. 15.
    Jiang X, Yao H, Liu S (2017) How many zero crossings? a method for structure-texture image decomposition. Comput Graph 68:129–141CrossRefGoogle Scholar
  16. 16.
    Karacan L, Erdem E, Erdem A (2013) Structure-preserving image smoothing via region covariances. ACM Trans Graph 32(6):176:1–176:11CrossRefGoogle Scholar
  17. 17.
    Kopf J, Cohen MF, Lischinski D, Uyttendaele M (2007) Joint bilateral upsampling. ACM Trans Graph 26(3):96–99CrossRefGoogle Scholar
  18. 18.
    Lan X, Ma AJ, Yuen PC (2014) Multi-cue visual tracking using robust feature-level fusion based on joint sparse representation. In: Proc IEEE conference on computer vision and pattern recognition, pp 1194–1201Google Scholar
  19. 19.
    Lan X, Ma AJ, Yuen PC, Chellappa R (2015) Joint sparse representation and robust feature-level fusion for multi-cue visual tracking. IEEE Trans Image Process 24(12):5826–5841MathSciNetCrossRefGoogle Scholar
  20. 20.
    Lan X, Yuen PC, Chellappa R (2017) Robust mil-based feature template learning for object tracking. In: Proc conference on artificial intelligence (AAAI), pp 4118–4125Google Scholar
  21. 21.
    Lan X, Zhang S, Yuen PC (2016) Robust joint discriminative feature learning for visual tracking. In: Proc international joint conference on artificial intelligence, pp 3403–3410Google Scholar
  22. 22.
    Lan X, Zhang S, Yuen PC, Chellappa R (2018) Learning common and feature-specific patterns: a novel multiple-sparse-representation-based tracker. IEEE Trans Image Process 27(4):2022–2037MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lee H, Jeon J, Kim J, Lee S (2017) Structure-texture decomposition of images with interval gradient. In: Computer graphics forum, vol 36, pp 262–274CrossRefGoogle Scholar
  24. 24.
    Li Y, Guo F, Tan RT, Brown MS (2014) A contrast enhancement framework with jpeg artifacts suppression. In: European conference on computer vision, Springer, pp 174–188Google Scholar
  25. 25.
    Lindeberg T (1994) Scale-space theory: a basic tool for analyzing structures at different scales. J Appl Stat 21(1-2):225–270CrossRefGoogle Scholar
  26. 26.
    Lu C, Xu L, Jia J (2012) Combining sketch and tone for pencil drawing production. In: Proc symposium on non-photorealistic animation and rendering, pp 65–73Google Scholar
  27. 27.
    Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629–639CrossRefGoogle Scholar
  28. 28.
    Petschnigg G, Szeliski R, Agrawala M, Cohen M, Hoppe H, Toyama K (2004) Digital photography with flash and no-flash image pairs. ACM Trans Graph 23(3):664–672CrossRefGoogle Scholar
  29. 29.
    Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Phys D, Nonlinear Phenomena 60(1-4):259–268MathSciNetCrossRefGoogle Scholar
  30. 30.
    Su Z, Luo X, Deng Z, Liang Y, Ji Z (2013) Edge-preserving texture suppression filter based on joint filtering schemes. IEEE Trans Multimedia 15(3):535–548CrossRefGoogle Scholar
  31. 31.
    Su Z, Zeng B, Miao J, Luo X, Yin B, Chen Q (2017) Relative reductive structure-aware regression filter. J Comput Appl Math 329:244–255MathSciNetCrossRefGoogle Scholar
  32. 32.
    Subr K, Soler C, Durand F (2009) Edge-preserving multiscale image decomposition based on local extrema. ACM Trans Graph 28(5):147:1–147:9CrossRefGoogle Scholar
  33. 33.
    Thai B, Al-nasrawi M, Deng G, Su Z (2017) Semi-guided bilateral filter. IET Image Process 11(7):512–521CrossRefGoogle Scholar
  34. 34.
    Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: 6Th international conference on computer vision, pp 839–846Google Scholar
  35. 35.
    Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13 (4):600–612CrossRefGoogle Scholar
  36. 36.
    Wu H, Xu D, Yuan G (2017) Region covariance based total variation optimization for structure-texture decomposition. Multimedia Tools and ApplicationsGoogle Scholar
  37. 37.
    Xu L, Lu C, Xu Y, Jia J (2011) Image smoothing via L 0, gradient minimization. ACM Trans Graph 30(6):174:1–174:12Google Scholar
  38. 38.
    Xu L, Yan Q, Xia Y, Jia J (2012) Structure extraction from texture via relative total variation. ACM Trans Graph 31(6):139Google Scholar
  39. 39.
    Yin W, Goldfarb D, Osher S (2005) Image cartoon-texture decomposition and feature selection using the total variation regularized l1 functional. In: Variational, geometric, and level set methods in computer vision, Springer, pp 73–84Google Scholar
  40. 40.
    Zhang Q, Shen X, Xu L, Jia J (2014) Rolling guidance filter. In: European conference on computer vision, Springer, pp 815–830Google Scholar
  41. 41.
    Zhou Z, Wang B, Ma J (2018) Scale-aware edge-preserving image filtering via iterative global optimization. IEEE Trans Multimedia 20(6):1392–1405CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mukhalad Al-nasrawi
    • 1
    • 2
    Email author
  • Guang Deng
    • 1
  • Waseem Waheed
    • 1
  1. 1.Department of EngineeringLa Trobe UniversityBundooraAustralia
  2. 2.Al-Musaib Technical CollegeAl-Furat Al-Awsat Technical UniversityBabylonIraq

Personalised recommendations