Advertisement

Multimedia Tools and Applications

, Volume 78, Issue 5, pp 5969–5988 | Cite as

An audio encryption based on synchronization of robust BAM FCNNs with time delays

  • M. Kalpana
  • K. RatnaveluEmail author
  • P. Balasubramaniam
Article
  • 109 Downloads

Abstract

In this work, authors’ proposed an audio encryption based on synchronization of hybrid bidirectional associative memory (BAM) and fuzzy cellular neural networks (FCNNs) with time delays. Here, the significant effort is to find the values of the parameters \(A,\ B,\ D,\ \alpha ,\ \beta ,\ \tilde {A},\ \tilde {B},\ \tilde {D},\ \tilde {\alpha },\ \tilde {\beta },\ L,\ \tilde {L},\) \(O_{d}, \ \tilde {O}_{d},\ O_{a}, \ \tilde {O}_{a},\ O_{b}, \ \tilde {O}_{b},\) of the given robust BAM FCNNs system to obtain the dynamical signal (chaotic) which are used to encrypt an audio file and satisfy the condition of Linear matrix inequality (LMI) by choosing suitable Lyapunov-Krasovskii functional (LKF). Further, the key sensitivity of order \(10^{-10}\) of this proposed method have massive key space to make brute-force attack infeasible. Numerical simulations, results and discussions along with comparison are provided to illustrate the effectiveness and merits of the proposed scheme.

Keywords

Bidirectional associative memory Chaos Encryption Fuzzy cellular neural networks Linear matrix inequality 

Notes

Acknowledgments

This work was supported by the Fundamental Research Grant Scheme (FRGS) MoHE Grant No. FP051-2016. Dr. M. Kalpana is working as a Post-Doctoral Research Fellow at the University of Malaya.

References

  1. 1.
    Abdurahman A, Jiang H, Teng Z (2016) Finite-time synchronization for fuzzy cellular neural networks with time-varying delays. Fuzzy Sets Syst 297:96–111MathSciNetCrossRefGoogle Scholar
  2. 2.
    Babu SG, Ilango P (2013) Higher dimensional chaos for audio encryption. In: 2013 IEEE Symposium on computational intelligence in cyber security (CICS). IEEE, pp 52–58Google Scholar
  3. 3.
    Balasubramaniam P, Kalpana M, Rakkiyappan R (2011) Global asymptotic stability of BAM fuzzy cellular neural networks with time delay in the leakage term, discrete and unbounded distributed delays. Math Comput Modelling 53:839–853MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bigdeli N, Farid Y, Afshar K (2012) A novel image encryption/decryption scheme based on chaotic neural networks. Eng Appl Artif Intell 25:753–765CrossRefGoogle Scholar
  5. 5.
    Boyd S, El Ghaoui L, Feron E, Balakrishnan V (1994) Linear matrix inequalities in system and control theory, vol 15. SiamGoogle Scholar
  6. 6.
    Carroll TL, Pecora LM (1991) Synchronizing chaotic circuits. IEEE Trans Circuits Syst 38:453–456CrossRefGoogle Scholar
  7. 7.
    Cui J, Liu Y, Xu Y, Zhao H, Zha H (2013) Tracking generic human motion via fusion of low- and high-dimensional approaches. IEEE Trans Syst Man Cybern: Syst 43:996–1002CrossRefGoogle Scholar
  8. 8.
    Enayatifar R, Sadaei HJ, Abdullah AH, Lee M, If Isnin (2015) A novel chaotic based image encryption using a hybrid model of deoxyribonucleic acid and cellular automata. Opt Lasers Eng 71:33–41CrossRefGoogle Scholar
  9. 9.
    Jawahir A, Haviluddin H (2015) An audio encryption using transposition method. Int J Adv Intell Informatics 1:98–106CrossRefGoogle Scholar
  10. 10.
    Kalpana M, Balasubramaniam P, Ratnavelu K (2015) Direct delay decomposition approach to synchronization of chaotic fuzzy cellular neural networks with discrete, unbounded distributed delays and Markovian jumping parameters. Appl Math Comput 254:291–304MathSciNetzbMATHGoogle Scholar
  11. 11.
    Kosko B (1987) Adaptive bidirectional associative memories. Appl Opt 26:4947–4960CrossRefGoogle Scholar
  12. 12.
    Kosko B (1988) Bidirectional associative memories. IEEE Trans Syst Man Cybern 18:49–60MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lan R, He J, Wang S, Gu T, Luo X (2018) Integrated chaotic systems for image encryption. Signal Process 147:133–145CrossRefGoogle Scholar
  14. 14.
    Lian S (2009) A block cipher based on chaotic neural networks. Neurocomputing 72:1296–1301CrossRefGoogle Scholar
  15. 15.
    Lima JB, da Silva Neto EF (2016) Audio encryption based on the cosine number transform. Multimed Tools Appl 75:8403–8418CrossRefGoogle Scholar
  16. 16.
    Liu Y, Nie L, Han L, Zhang L, Rosenblum DS (2015) Action2Activity: recognizing complex activities from sensor data. In IJCAI 2015, pp 1617–1623Google Scholar
  17. 17.
    Liu H, Kadir A, Li Y (2016) Audio encryption scheme by confusion and diffusion based on multi-scroll chaotic system and one-time keys. Opt-Int J Light Electron Opt 127:7431–7438CrossRefGoogle Scholar
  18. 18.
    Liu Y, Nie L, Liu L, Rosenblum DS (2016) From action to activity: sensor-based activity recognition. Neurocomputing 181:108–115CrossRefGoogle Scholar
  19. 19.
    Liu Y, Zhang L, Nie L, Yan Y, Rosenblum DS (2016) Fortune teller: predicting your career path. In: AAAI 2016, pp 201–207Google Scholar
  20. 20.
    Liu Y, Zheng Y, Liang Y, Liu S, Rosenblum DS (2016) Urban water quality prediction based on multi-task multi-view learning. In: IJCAI 2016, pp 2576–2582Google Scholar
  21. 21.
    Nadir J, Ein AA, Alqadi Z (2016) A technique to encrypt-decrypt stereo wave file. Int J Comput Inf Technol (ISSN 2279-0764) 05:465–470Google Scholar
  22. 22.
    Parvaz R, Zarebnia M (2018) A combination chaotic system and application in color image encryption. Opt Laser Technol 101:30–41CrossRefGoogle Scholar
  23. 23.
    Prabu AV, Srinivasarao S, Apparao T, Rao MJ, Rao KB (2012) Audio encryption in handsets. Int J Comput Appl 40:40–45Google Scholar
  24. 24.
    Rakkiyappan R, Latha VP, Zhu Q, Yao Z (2017) Exponential synchronization of Markovian jumping chaotic neural networks with sampled-data and saturating actuators. Nonlinear Anal Hybrid Syst 24:28–44MathSciNetCrossRefGoogle Scholar
  25. 25.
    Ratnavelu K, Manikandan M, Balasubramaniam P (2015) Synchronization of fuzzy bidirectional associative memory neural networks with various time delays. Appl Math Comput 270:582–605MathSciNetzbMATHGoogle Scholar
  26. 26.
    Ratnavelu K, Kalpana M, Balasubramaniam P, Wong K, Raveendran P (2017) Image encryption method based on chaotic fuzzy cellular neural networks. Signal Process 140:87–96CrossRefGoogle Scholar
  27. 27.
    Sakthivel R, Vadivel P, Mathiyalagan K, Arunkumar A, Sivachitra M (2015) Design of state estimator for bidirectional associative memory neural networks with leakage delays. Inform Sci 296:263–274MathSciNetCrossRefGoogle Scholar
  28. 28.
    Wan L, Zhou Q, Liu J (2017) Delay-dependent attractor analysis of Hopfield neural networks with time-varying delays. Chaos Solitons Fractals 101:68–72MathSciNetCrossRefGoogle Scholar
  29. 29.
    Wen S, Zeng Z, Huang T, Meng Q, Yao W (2015) Lag synchronization of switched neural networks via neural activation function and applications in image encryption. IEEE Trans Neural Netw Learn Syst 26:1493–1502MathSciNetCrossRefGoogle Scholar
  30. 30.
    Wang Y, Zhao Y, Zhou Q, Lin Z (2018) Image encryption using partitioned cellular automata. Neurocomputing 275:1318–1332CrossRefGoogle Scholar
  31. 31.
    Wong KW, Lin Q, Chen J (2010) Simultaneous arithmetic coding and encryption using chaotic maps. IEEE Trans Circuits Syst II: Exp Briefs 57:146–150CrossRefGoogle Scholar
  32. 32.
    Yang T, Yang LB (1996) The global stability of fuzzy cellular neural network. IEEE Trans Circuits Syst I: Fund Theory Appl 43:880–883MathSciNetCrossRefGoogle Scholar
  33. 33.
    Yang R, Gao H, Shi P (2009) Novel robust stability criteria for stochastic Hopfield neural networks with time delays. IEEE Trans Syst Man Cybern Part B (Cybernetics) 39:467–474CrossRefGoogle Scholar
  34. 34.
    Yang YG, Tian J, Sun SJ, Xu P (2015) Quantum-assisted encryption for digital audio signals. Opt-Int J Light Electron Opt 126:3221–3226CrossRefGoogle Scholar
  35. 35.
    Yu ZX, Mei M (2016) Uniqueness and stability of traveling waves for cellular neural networks with multiple delays. J Diff Equa 260:241–267MathSciNetCrossRefGoogle Scholar
  36. 36.
    Zhou Y, Hua Z, Pun CM, Chen CP (2015) Cascade chaotic system with applications. IEEE Trans Cybern 45:2001–2012CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Mathematical Sciences, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of Mathematics, Gandhigram Rural InstituteDeemed UniversityGandhigramIndia

Personalised recommendations