Multimedia Tools and Applications

, Volume 78, Issue 5, pp 6119–6138 | Cite as

Image phylogeny tree construction based on local inheritance relationship correction

  • Nan Zhu
  • Junge ShenEmail author


With the popularization of image editing software and social networks, digital images can be easily downloaded, re-edited and re-distributed on the Internet, which brings a large amount of near-duplicate images (NDIs) whose content are slightly different. The underlying transformation history within a group of NDIs is a powerful tool to determine both the image originality and authenticity. Recent works have focus on the construction of image phylogeny tree (IPT), i.e., a directed acyclic graph to describe the genealogical relationship within NDIs. State-of-the-art approaches for IPT construction share a common two-step pipeline: i) dissimilarity matrix estimation with a dissimilarity function; and ii) tree structure construction with a tree-building algorithm. Many approaches addressed on dissimilarity matrix estimation as the accuracy of the tree-building algorithms are significantly impaired by this step. Different from these methods, in this paper, instead of proposing a novel dissimilarity matrix estimation method, we design an IPT construction framework based on local inheritance relationship correction. The motivation among our proposed framework is that the negative influence of an inaccurate dissimilarity matrix can be suppressed by a subsequent correction. Extensive experimental results show that our proposed approach can achieve better performance for IPT construction under various challenging scenarios when compared with the state-of-the-art IPT construction algorithms.


Image phylogeny tree Image forensics Multimedia phylogeny Near duplicated images Optimum branching 



  1. 1.
    Bay H, Ess A, Tuytelaars T, Van Gool L (2008) Speeded-up robust features (SURF). Comput Vis Image Underst 110:346–359CrossRefGoogle Scholar
  2. 2.
    Bestagini P, Tagliasacchi M, Tubaro S (2016) Image phylogeny tree reconstruction based on region selection. Proc Int Conf Acoust, Speech Signal Process: 2059–2063Google Scholar
  3. 3.
    Birajdar G, Mankar V (2013) Digital image forgery detection using passive techniques: a survey. Digit Investig 10(4):226–245CrossRefGoogle Scholar
  4. 4.
    Bock F (1971) An algorithm to construct a minimum directed spanning tree in a directed network. Dev Opera Res 1(1):29–44zbMATHGoogle Scholar
  5. 5.
    Chu YJ, Liu TH (1965) On shortest arborescence of a directed graph. Sci Sinica 14:1396–1400MathSciNetzbMATHGoogle Scholar
  6. 6.
    Costa FDO, Oikawa MA, Dias Z, Goldenstein S, Rocha A (2014) Image phylogeny forests reconstruction. IEEE Trans Inf Forensics Secur 9(10):1533–1546CrossRefGoogle Scholar
  7. 7.
    Costa FDO, Oliveira A, Ferrara P, Dias Z, Goldenstein S, Rocha A (2017) New dissimilarity measures for image phylogeny reconstruction. Pattern Anal Applic 20(4):1289–1305MathSciNetCrossRefGoogle Scholar
  8. 8.
    De Rosa A, Uccheddu F, Costanzo A, Pive A, Barni M (2010) Exploring image dependencies: a new challenge in image forensics. Proc SPIE Conf Media Forensics Sec II:75410XCrossRefGoogle Scholar
  9. 9.
    Dias Z, Goldenstein S, Rocha A (2013) Exploring heuristic and optimal branching algorithms for image phylogeny. J Vis Commun Image Represent 24(7):1124–1134CrossRefGoogle Scholar
  10. 10.
    Dias Z, Goldenstein S, Rocha A (2013) Large-scale image phylogeny: tracing image ancestral relationships. IEEE Multimed 20(3):58–70CrossRefGoogle Scholar
  11. 11.
    Dias Z, Goldenstein S, Rocha A (2013) Toward image phylogeny forests: automatically recovering semantically similar image relationships. Forensic Sci Int 231:178–189CrossRefGoogle Scholar
  12. 12.
    Dias Z, Rocha A, Goldenstein S (2010) First steps toward image phylogeny. Proc Int Workshop Inform Foren Sec: 1–6Google Scholar
  13. 13.
    Dias Z, Rocha A, Goldenstein S (2012) Image phylogeny by minimal spanning trees. IEEE Trans Inf Forensics Secur 7(2):774–788CrossRefGoogle Scholar
  14. 14.
    Dias Z, Rocha A, Goldenstein S (2011) Video phylogeny recovering near-duplicate video relationships. Proc Int Workshop Inform Foren Sec: 1–6Google Scholar
  15. 15.
    Edmonds J (1967) Optimal branchings. J Res Natl Bur Stand 71B:233–240CrossRefGoogle Scholar
  16. 16.
    Fischler M, Bolles R (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kennedy L, Chang S-F (2008) Internet image archaeology: automatically tracing the manipulation history of photographs on the web. Proc ACM Int Conf Multimed: 349–358Google Scholar
  18. 18.
    Korus P (2017) Digital image integrity - a survey of protection and verification techniques. Digit Signal Process 71:1–26MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kruskal JB (1956) On the shortest spanning subtree of a graph and the traveling salesman problem. Proc Am Math Soc 7(1):48–50MathSciNetCrossRefGoogle Scholar
  20. 20.
    Li L, Lin W, Wang X, Yang G, Bahrami K, Kot AC (2016) No-reference image blur assessment based on discrete orthogonal moments. IEEE Trans Cybernet 46(1):39–50CrossRefGoogle Scholar
  21. 21.
    Melloni A, Bestagini P, Milani S, Tagliasacchi M, Rocha A, Tubaro S (2014) Image phylogeny through dissimilarity metrics fusion. Proc Eur Workshop Visual Inform Process: 1–6Google Scholar
  22. 22.
    Milani S, Fontana M, Bestagini P, Tubaro S (2016) Phylogenetic analysis of near-duplicate images using processing age metrics. Proc Int Conf Acoust, Speech Signal Process: 2054–2058Google Scholar
  23. 23.
    Nucci M, Tagliasacchi M, Tubaro S (2013) A phylogenetic analysis of near-duplicate audio tracks. Proc Int Workshop Multimed Signal Process: 99–104Google Scholar
  24. 24.
    Oliveira A, Ferrara P, De Rosa A, Piva A, Barni M, Goldenstein S, Dias Z, Rocha A (2016) Multiple parenting phylogeny relationships in digital images. IEEE Trans Inf Forensics Secur 11(2):328–343CrossRefGoogle Scholar
  25. 25.
    Prim RC (1957) Shortest connection networks and some generalizations. Bell System Tech J 36(6):1389–1401CrossRefGoogle Scholar
  26. 26.
    Redi JA, Taktak W, Dugelay JL (2011) Digital image forensics: a booklet for beginners. Multimed Tools Appl 51(1):133–162CrossRefGoogle Scholar
  27. 27.
    Reinhard E, Adhikhmin M, Gooch B, Shirley P (2001) Color transfer between images. IEEE Comput Graph Appl 21(5):34–41CrossRefGoogle Scholar
  28. 28.
    Schaefer M, Stich M (2004) UCID: an uncompressed color image database. Proc SPIE 5307, Storage Retriev Methods Appl Multimed: 472–480Google Scholar
  29. 29.
    Shen J, Mei T, Gao X (2013) Video archaeology: understanding video manipulation history. Multimed Tools Appl 63(2):461–483CrossRefGoogle Scholar
  30. 30.
    Stamm MC, Wu M, Liu KJR (2013) Information forensics: an overview of the first decade. IEEE Access 1:167–200CrossRefGoogle Scholar
  31. 31.
    Zhou L, Wu D, Chen J, Dong Z (2017) Greening the smart cities: energy-efficient massive content delivery via D2D communications. IEEE Trans Industr Inform 14(4):1626–1634CrossRefGoogle Scholar
  32. 32.
    Zhou L, Wu D, Dong Z, Li X (2017) When collaboration hugs intelligence: content delivery over ultra-dense networks. IEEE Commun Mag 55(12):91–95CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronic Information EngineeringXi’an Technological UniversityXi’anChina
  2. 2.Unmanned System Research InstituteNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations