Advertisement

Multimedia Tools and Applications

, Volume 78, Issue 5, pp 6253–6275 | Cite as

Multiple image copy detection and evolution visualisation using tree graphs

  • Mohand Said AlliliEmail author
  • Nathalie Casemajor
  • Aymen Talbi
Article
  • 114 Downloads

Abstract

Image copy detection is an important problem for several applications such as detecting forgery to enforce copyright protection and intellectual property. One of the important problems following copy detection, however, is the assessment of the type of modifications undergone by an original image to form its copies. In this work, we propose a method for quantifying some of these modifications when multiple copies of the same image are available. We also propose an algorithm to estimate temporal precedence between images (i.e., the order of creation of the copies). Using the estimated relations, a tree graph is then built to visualize the history of evolution of the original image into its copies. Our work is important for ensuring better interpretation of image copies after their detection. It also lays a new ground for enhancing image indexing, dissemination analysis and search on the Web.

Keywords

Image copy detection Image transformation Copy evolution graph 

Notes

Acknowledgments

This work has been achieved thanks to the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) and the University of Quebec en Outaouais. The authors would like to thank Rosa Iris Rodriguez Rovira and Karine Michaud Tessier for their collaboration in dataset collection and processing.

References

  1. 1.
    Allili M (2012) Wavelet modeling using finite mixtures of generalized Gaussian distributions: Application to texture discrimination and retrieval. IEEE Trans Image Process 21(4):1452–1464MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Allili M, Ziou D (2015) Likelihood-based feature relevance for figure-ground segmentation in images and videos. Neurocomputing 167:658–670CrossRefGoogle Scholar
  3. 3.
    Amerini I, Ballan L, Caldelli R, Bimbo AD, Serra G (2011) A SIFT-based forensic method for copy-move attack detection and transformation recovery. IEEE Trans Inform Forensic Secur 6(3):1099–1110CrossRefGoogle Scholar
  4. 4.
    Bayram S, Sencar HT, Memon N (2009) An efficient and robust method for detecting copy-move forgery. In: IEEE international conference on acoustics, speech and signal processing, pp 1053–1056Google Scholar
  5. 5.
    Birajdar GK, Mankar VH (2013) Digital image forgery detection using passive techniques: a survey. Dig Investig 23(3):226–245CrossRefGoogle Scholar
  6. 6.
    Bosc M, Heitz F, Armspach J. -P., Namer I, Gounot D, Rumbach L (2003) Automatic change detection in multimodal serial MRI application to multiple sclerosis lesion evolution. NeuroImage 20(2):643–656CrossRefGoogle Scholar
  7. 7.
    Boulmerka A, Allili M, Ait-Aoudia S (2014) A generalized multiclass histogram thresholding approach based on mixture modelling. Pattern Recogn 47(3):1330–1348CrossRefGoogle Scholar
  8. 8.
    Boulmerka A, Allili M (2015) Background modeling in videos revisited using finite mixtures of generalized Gaussians and spatial information. In: IEEE international conference on image processing, pp 3660–3664Google Scholar
  9. 9.
    Camargo JE, Caicedo JC, Gonzalez FA (2013) A Kernel-based framework for image collection exploration. J Vis Lang Comput 24(1):53–67CrossRefGoogle Scholar
  10. 10.
    Chen C, McCloskey S, Yu J (2017) Image splicing detection via camera response function analysis. In: IEEE conference on computer vision and pattern recognition, pp 1876–1885Google Scholar
  11. 11.
    Cheng J, Adamic L, Dow PA, Park M, Kleinberg JM, Leskovec J (2014) Can cascades be predicted? In: International conference on world wide web, pp 925–936Google Scholar
  12. 12.
    Christlein V, Riess C, Riess C, Angelopoulou E (2012) An evaluation of popular copy-move forgery detection approaches. IEEE Trans Inform Forensic Secur 7 (6):1841–1854CrossRefGoogle Scholar
  13. 13.
    Cox I, Miller M, Bloom J, Fridrich J, Kalker T (2007) Digital watermarking and steganography, 2nd edn. Morgan Kaufmann, BurlingtonGoogle Scholar
  14. 14.
    Datta R, Joshi D, Li J, Wang JZ (2008) Image retrieval: ideas, influences, and trends of the new age. ACM Comput Surveys 40(2):1–60CrossRefGoogle Scholar
  15. 15.
    Duda RO, Hart PE, Stork DG (2002) Pattern classification, 2nd edn. Wiley, HobokenzbMATHGoogle Scholar
  16. 16.
    Farid H (2009) Image forgery detection: a survey. IEEE Signal Proc Mag 26 (2):16–25CrossRefGoogle Scholar
  17. 17.
    Faulkner A, Chavez C (2017) Adobe-photoshop CC classroom in a book. Adobe PressGoogle Scholar
  18. 18.
    Fei-Fei L, Fergus R, Perona P (2004) Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In: IEEE computer vision and pattern recongition workshop on generative-model based vision, pp 1–9Google Scholar
  19. 19.
    Glumova NI, Kuznetsov AV (2011) Detection of local artificial changes in images optoelectronics. Instrum Data Process 47(3):207–214CrossRefGoogle Scholar
  20. 20.
    Goel S, Anderson A, Hofman J, Watts DJ (2016) The structural virality of online diffusion. Manag Sci 62(1):180–196Google Scholar
  21. 21.
    Gonzalez RC, Woods RE (2007) Digital image processing. Springer, BerlinGoogle Scholar
  22. 22.
    Gu Y, Wang C, Ma J, Nemiroff RJ, Kao DL, Parra D (2016) Visualization and recommandation of large image collections toward effective sensemaking. Inf Vis 16(1):21–47CrossRefGoogle Scholar
  23. 23.
    Gu W, Lv Z, Hao M (2017) Change detection method for remote sensing images based on an improved Markov random field. Multimed Tools Appl 76(17):17719–17734CrossRefGoogle Scholar
  24. 24.
    Hsiao J-H, Chen C-S, Chien L-F, Chen M-S (2007) A new approach to image copy detection based on extended feature sets. IEEE Trans Image Process 16 (8):2069–2079MathSciNetCrossRefGoogle Scholar
  25. 25.
    Hsu T-C, Hsieh W-S, Chiang JY, Su T-S (2011) New watermark-removal method based on Eigen-Image energy. IET Inf Secur 5(1):43–50CrossRefGoogle Scholar
  26. 26.
    Hussain M, Chen D, Cheng A, Wei H, Stanley D (2013) Change detection from remotely sensed images: from pixel-based to object-based approaches. ISPRS J Photogramm Remote Sens 80:91–106CrossRefGoogle Scholar
  27. 27.
    Ilsever M, Unsalan C (2012) Pixel-based change detection methods. Two-dimensional change detection methods: remote sensing applications. Springer, BerlinCrossRefGoogle Scholar
  28. 28.
    Ke Y, Sukthankar R, Huston L (2004) Efficient near-duplicate detection and sub-image retrieval.. In: ACM international conference on multimedia, pp 869–876Google Scholar
  29. 29.
    Kim C (2003) Content-based image copy detection. Signal Process Image Commun 18(3):169–184CrossRefGoogle Scholar
  30. 30.
    Krishnan S, Butler P, Tandon R, Leskovec J, Ramakrishnan N (2016) Seeing the forest for the trees new approaches to forecasting cascades.. In: ACM conference on web science, pp 249–258Google Scholar
  31. 31.
    Lin CY, Wu M, Bloom JA, Cox IJ, Miller ML, Lui YM (2001) Rotation, scale, and translation resilient watermarking for images. IEEE Trans Image Process 10(5):767782zbMATHCrossRefGoogle Scholar
  32. 32.
    Liu G-H, Yang J-Y (2013) Content-based image retrieval using color difference histogram. Pattern Recogn 46(1):188–198CrossRefGoogle Scholar
  33. 33.
    Luo W, Huang J, Qiu G (2006) Robust detection of region-duplication forgery in digital images.. In: IEEE international conference on pattern recognition, pp 746–749Google Scholar
  34. 34.
    Mahdian B, Saic S (2007) Detection of Copymove forgery using a method based on blur moment invariants. Forensic Sci Int’l 171(23):180–189CrossRefGoogle Scholar
  35. 35.
    Manovich L (2012) Media visualization: visual techniques for exploring large media collections. Media Studies FuturesGoogle Scholar
  36. 36.
    Muhammad G, Hussaina M, Bebis G (2012) Passive copy move image forgery detection using undecimated dyadic wavelet transform. Digit Investig 9(1):49–57CrossRefGoogle Scholar
  37. 37.
    Ng T, Chang S (2004) A model for image splicing.. In: IEEE international conference on image processing, pp 1169–1172Google Scholar
  38. 38.
    Ouyed O, Allili M (2018) Feature weighting for multinomial kernel logistic regression and application to action recognition. Neurocomputing 275:1752–1768CrossRefGoogle Scholar
  39. 39.
    Pan X, Lyu S (2010) Region duplication detection using image feature matching. IEEE Trans Inf Forensic Secur 5(4):857–867CrossRefGoogle Scholar
  40. 40.
    Park J, Tai Y-W, Kweon IS (2012) Identigram/watermark removal using cross-channel correlation. In: IEEE conference on computer vision and pattern recognition, pp 446–453Google Scholar
  41. 41.
    Petrou M, Petrou C (2010) Image processing: the fundamentals, 2nd edn. Wiley, HobokenzbMATHCrossRefGoogle Scholar
  42. 42.
    Radke RJ, Andra S, Al-Kofahi O, Roysam B (2005) Image change detection algorithms: a systematic survey. IEEE Trans Image Process 14(3):294–307MathSciNetCrossRefGoogle Scholar
  43. 43.
    Stefano LD, Mattoccia S, Mola M (2003) An efficient algorithm for exhaustive template matching based on normalized cross-correlation. In: International conference on image analysis and processing, pp 322– 327Google Scholar
  44. 44.
    Szeliski R (2006) Image alignment and stitching: a tutorial. Found Trends Comput Graph Vis 2(1):1–104MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
  46. 46.
    Tsai D-M, Lin C-T (2003) Fast normalized cross correlation for defect detection. Pattern Recogn Lett 24:2625–2631CrossRefGoogle Scholar
  47. 47.
    Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13 (4):600–612CrossRefGoogle Scholar
  48. 48.
    Wang W, Dong J, Tan T (2009) Effective image splicing detection based on image chroma. In: IEEE international conference on image processing, pp 1257–1260Google Scholar
  49. 49.
    Wang K, Babenko B, Belongie S (2011) End-to-end scene text recognition. In: IEEE international conference on computer vision, pp 1457–1464Google Scholar
  50. 50.
    Wang C, Reese JP, Zhang H, Tao J, Nemiroff RJ (2013) IMap: a stable layout for navigating large image collections with embedded search.. In: Visualization and data analysis, pp 1–14Google Scholar
  51. 51.
    Wang C, Reese JP, Zhang H, Tao J, Gu Y, Ma J, Nemiroff RJ (2015) Similarity-based visualization of large image collections. Inf Vis 14(3):183–203CrossRefGoogle Scholar
  52. 52.
    Yan L, Zou F, Guo R, Gao L, Zhou K, Wang C (2016) Feature aggregating hashing for image copy detection. World Wide Web 19(2):217–229CrossRefGoogle Scholar
  53. 53.
    Yang R, Kalnis P, Tung AKH (2005) Similarity evaluation on tree-structured data. In: ACM SIGMOD international conference on management of data, pp 754–765Google Scholar
  54. 54.
    Ye S, Sun Q, Chang E-C (2007) Detecting digital image forgeries by measuring inconsistencies of blocking artifact.. In: IEEE international conference on multimedia and expo, pp 12–15Google Scholar
  55. 55.
    Zhang K, Shasha D (1989) Simple fast algorithms for the editing distance between trees and related problems. SIAM J Comput 18:1245–1262MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Zhang D-Q, Chang S-F (2004) Detecting image near-duplicate by stochastic attributed relational graph matching with learning.. In: ACM international conference on multimedia, pp 877–884Google Scholar
  57. 57.
    Zhang W, Cao X, Qu Y, Hou Y, Zhao H, Zhang C (2010) Detecting and extracting the photo composites using planar homography and graph cut. IEEE Trans Inf Forensics Security 5(3):544–555CrossRefGoogle Scholar
  58. 58.
    Zhao W-L, Ngo C-W (2013) Flip-invariant SIFT for copy and object detection. IEEE Trans Image Process 22(3):980–991MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Zhong J, Gan Y, Young J, Huang L, Lin P (2017) A new block-based method for copy move forgery detection under image geometric transforms. Multimed Tools Appl 76(13):14887–14903CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mohand Said Allili
    • 1
    Email author
  • Nathalie Casemajor
    • 2
  • Aymen Talbi
    • 1
  1. 1.Département d’informatique et d’ingénierieUniversité du Québec en OutaouaisGatineauCanada
  2. 2.Centre Urbanisation Culture SociétéInstitut national de la recherche scientifiqueMontrealCanada

Personalised recommendations