Multimedia Tools and Applications

, Volume 78, Issue 2, pp 2251–2268 | Cite as

Real-time deformation and cutting simulation of cornea using point based method

  • Yanjun PengEmail author
  • Qiaoling Li
  • Yingying Yan
  • Qiong Wang


This paper proposed an improved point based method to simulate the deformation and cutting of cornea, realized the real-time interaction between the force feedback device and the model in virtual surgery. We construct a hybrid deformable model, the model consists of two parts: the interior of the cornea consists of some particles, and the boundary consists of some meshes which are formed by surfaces nodes, calculate the stress tensor of particle can simulate corneal deformation. In this process, in order to ensure the stability of the deformation, a volume constraint is added to our model. By sampling on the surface of the model to form some meshes, the model could support the changes of topology. Using a node replication method for surface cutting and subdivide the cutting triangles in the cutting process, so that it can generate relatively smooth incision. Experiments show that the model provides a real and efficient deformation simulation, with good stability and scalability.


Point based method Real-time interaction Virtual surgery Deformation simulation 



This work is supported by the National key research and development project of China under Grant No.2016YFC0801406, the Natural Science Foundation of Shandong Province under Grant No. ZR2015FM013, the National Natural Science Foundation of China under Grant No. 61502279, the National key research and development project of the Shandong Province under Grant No. 2016GSF120012, and by Special Project Fund of Taishan Scholars of Shandong Province, Leading Talent Project of Shandong University of Science and Technology.


  1. 1.
    Bianchi G, Solenthaler B, Székely G, et al (2004) Simultaneous topology and stiffness identification for mass-spring models based on FEM reference deformations [C]// Medical Image Computing and Computer-Assisted Intervention -- Miccai 2004, International Conference Saint-Malo, France, September 26-29, 2004, Proceedings. DBLP, p 293–301Google Scholar
  2. 2.
    Bianchi G, Solenthaler B, Székely G et al (2004) Simultaneous topology and stiffness identification for mass-spring models based on fem reference deformations [J]. Med Image Comput Comput Assist Interv 2004:293–301Google Scholar
  3. 3.
    Busaryev O, Dey TK, Wang H (2013) Adaptive fracture simulation of multi-layered thin plates [M]. ACMGoogle Scholar
  4. 4.
    Camara M, Mayer E, Darzi A et al (2016) Soft tissue deformation for surgical simulation: a position-based dynamics approach [J]. Int J Comput Assist Radiol Surg 11(6):919–928CrossRefGoogle Scholar
  5. 5.
    Choi KS, Soo S, Chung FL (2009) A virtual training simulator for learning cataract surgery with phacoemulsification [J]. Comput Biol Med 39(11):1020–1031CrossRefGoogle Scholar
  6. 6.
    Faure F, Gilles B, Bousquet G et al (2011) Sparse meshless models of complex deformable solids [J]. ACM Trans Graph 30(4):1–10CrossRefGoogle Scholar
  7. 7.
    Guo X, Qin H (2010) Real-time meshless deformation [J]. Comput Animat Virt W 16(3-4):189–200Google Scholar
  8. 8.
    Hong M, Jung S, Choi MH et al (2006) Fast volume preservation for a mass-spring system [J]. IEEE Comput Graph Appl 26(5):83–91CrossRefGoogle Scholar
  9. 9.
    Jung H, Lee DY (2012) Real-time cutting simulation of meshless deformable object using dynamic bounding volume hierarchy [M]. John Wiley and Sons Ltd.Google Scholar
  10. 10.
    Kaufmann P, Martin S, Botsch M et al (2009) Enrichment textures for detailed cutting of shells [J]. ACM Trans Graph 28(3):1–10CrossRefGoogle Scholar
  11. 11.
    Lim YJ, Hu J, Chang CY, et al (2006) Soft tissue deformation and cutting simulation for the multimodal surgery training [C]// IEEE Symposium on Computer-Based Medical Systems. IEEE Computer Society, p 635-640Google Scholar
  12. 12.
    Liu Y, Jiao S, Wu W, et al (2009) GPU accelerated fast FEM deformation simulation [C]// Circuits and Systems, 2008. APCCAS 2008. IEEE Asia Pacific Conference on. IEEE, p 606-609Google Scholar
  13. 13.
    Markus B, Markus I, Matthias T (2009) Corotated SPH for deformable solids [C]. Eurographics Workshop on Natural Phenomena, NPH 2009, Munich, GermanyGoogle Scholar
  14. 14.
    Müller M, Keiser R, Nealen A, et al (2004) Point based animation of elastic, plastic and melting objects [C]// ACM Siggraph/eurographics Symposium on Computer Animation. Eurographics Association, p 141–151Google Scholar
  15. 15.
    Müller M, Heidelberger B, Teschner M, et al (2005) Meshless deformations based on shape matching [C]// Acm Siggraph. ACM, p 471–478Google Scholar
  16. 16.
    Müller M, Heidelberger B, Hennix M et al (2007) Position based dynamics ☆[J]. J Vis Commun Image Represent 18(2):109–118CrossRefGoogle Scholar
  17. 17.
    Pauly M, Keiser R, Adams B et al (2005) Meshless animation of fracturing solids [J]. ACM Trans Graph 24(3):957CrossRefGoogle Scholar
  18. 18.
    Peng Y, Jia R, Wang Y et al (2011) A virtual endoscopy system for virtual medicine [J]. Comput Animat Virt W 22(2-3):277–284Google Scholar
  19. 19.
    Peng Y, Ma Y, Wang Y et al (2017) The application of interactive dynamic virtual surgical simulation visualization method [J]. Multimed Tools Appl:1–18Google Scholar
  20. 20.
    Selle A, Lentine M, Fedkiw R (2008) A mass spring model for hair simulation [J]. ACM Trans Graph 27(3):1–11CrossRefGoogle Scholar
  21. 21.
    Shrivastava P, Das S (2014) Particle coding for Meshfree cutting of deformable assets [C]// Indian Conference on Computer Vision Graphics and Image Processing. ACM, p 6Google Scholar
  22. 22.
    Solenthaler B, Schläfli J, Pajarola R (2007) A unified particle model for fluid–solid interactions: research articles [J]. Comput Animat Virt W 18(1):69–82CrossRefGoogle Scholar
  23. 23.
    Wang Y, Wu X, Wang G (2014) An angle bending constraint model for position-based dynamics [C]// International Conference on Virtual Reality and Visualization. IEEE, p 430-434Google Scholar
  24. 24.
    Wicke M, Botsch M, Gross M (2007) A finite element method on convex polyhedra [C]// Computer Graphics Forum. Blackwell Publishing Ltd, p 355–364Google Scholar
  25. 25.
    Zhu B, Gu L (2012) A hybrid deformable model for real-time surgical simulation [J]. Comput Med Imaging Graph 36(5):356–365CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yanjun Peng
    • 1
    Email author
  • Qiaoling Li
    • 1
  • Yingying Yan
    • 1
  • Qiong Wang
    • 2
  1. 1.College of Computer Science and EngineeringShandong University of Science and TechnologyQingdaoChina
  2. 2.Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina

Personalised recommendations