Advertisement

Multimedia Tools and Applications

, Volume 78, Issue 2, pp 1913–1947 | Cite as

Improvement of age estimation using an efficient wrinkles descriptor

  • Imad Mohamed OuloulEmail author
  • Zakaria Moutakki
  • Karim Afdel
  • Abdellah Amghar
Article
  • 47 Downloads

Abstract

Lately, automatic age estimation from facial images is in demand because of the usage of this technique in different fields including security, demographic analysis, access control and vending machines control. However, age estimation is difficult to conduct due to the aging process features’ evolution complexity, such as the face shape and skin wrinkles. In this context, we propose a new descriptor called Local Matched Filter Binary Pattern (LMFBP) designed specifically for the detection and extraction of skin wrinkles. This descriptor is based on exploiting both the Matched Filter and the texture operator Local Binary Pattern (LBP). The Matched Filter handles the detection of wrinkles using template matching between the approximate shape of wrinkles and the face image patches. Furthermore, the LBP operator encodes the response of the Matched Filter into pattern codes to build the histogram of skin aging feature. The fusion of local features provided by the LMFBP with the global features of the appearance enabled us to propose a new age estimation method. In this method, we adopted the hierarchical approach in the learning phase, in order to consider the varying aging process from one age stage to another. The proposed age estimation method has been tested on both FGnetAD, HQfaces and PAL datasets, and the results provided are 4.95, 3.65 and 5.33 in terms of MAE, respectively. These results prove the efficiency of the proposed approach when compared to the state-of-the-art age estimation methods.

Keywords

Age estimation Facial images Biometrics Wrinkles Local matched filter binary pattern 

Notes

References

  1. 1.
    Ahonen T, Hadid A, Pietikainen M (2006) Face description with local binary patterns: Application to face recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2037–2041.  https://doi.org/10.1109/TPAMI.2006.244 zbMATHGoogle Scholar
  2. 2.
    Bukar AM, Ugail H, Connah D (2016) Automatic age and gender classification using supervised appearance model. J Electron Imaging 25(6):061,605–061,605.  https://doi.org/10.1117/1.JEI.25.6.061605 Google Scholar
  3. 3.
    Chaudhuri S, Chatterjee S, Katz N, Nelson M, Goldbaum M (1989) Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans Med Imaging 8(3):263–269.  https://doi.org/10.1109/42.34715 Google Scholar
  4. 4.
    Choi SE, Lee YJ, Lee SJ, Park KR, Kim J (2011) Age estimation using a hierarchical classifier based on global and local facial features. Pattern Recogn 44(6):1262–1281.  https://doi.org/10.1016/j.patcog.2010.12.005 zbMATHGoogle Scholar
  5. 5.
    Cootes TF, Taylor CJ, Cooper DH, Graham J (1995) Active shape models-their training and application. Comput Vis Image Underst 61(1):38–59.  https://doi.org/10.1006/cviu.1995.1004 Google Scholar
  6. 6.
    Cootes TF, Edwards GJ, Taylor CJ (1998) Active appearance models. In: European conference on computer vision. Springer, pp 484–498Google Scholar
  7. 7.
    Cootes TF, Edwards GJ, Taylor CJ (2001) Active appearance models. IEEE Trans Pattern Anal Mach Intell 23(6):681–685Google Scholar
  8. 8.
    Cula GO, Bargo PR, Nkengne A, Kollias N (2013) Assessing facial wrinkles: automatic detection and quantification. Skin Res Technol 19(1):e243–e251Google Scholar
  9. 9.
    Dong Y, Liu Y, Lian S (2016) Automatic age estimation based on deep learning algorithm. Neurocomputing 187:4–10.  https://doi.org/10.1016/j.neucom.2015.09.115 Google Scholar
  10. 10.
    El Dib MY, El-Saban M (2010) Human age estimation using enhanced bio-inspired features (ebif). In: 17th IEEE International Conference on Image Processing(ICIP’10). IEEE, pp 1589–1592Google Scholar
  11. 11.
    Fu Y, Xu Y, Huang TS (2007) Estimating human age by manifold analysis of face pictures and regression on aging features. In: IEEE International Conference on Multimedia and Expo. IEEE, pp 1383–1386Google Scholar
  12. 12.
    Fu Y, Guo G, Huang TS (2010) Age synthesis and estimation via faces: a survey. IEEE Trans Pattern Anal Mach Intell 32(11):1955–1976Google Scholar
  13. 13.
    Fukai H, Takimoto H, Mitsukura Y, Fukumi M (2007) Apparent age estimation system based on age perception. In: SICE, 2007 Annual Conference. IEEE, pp 2808–2812Google Scholar
  14. 14.
    Gao F, Ai H (2009) Face age classification on consumer images with gabor feature and fuzzy lda method. In: International Conference on Biometrics. Springer, pp 132–141Google Scholar
  15. 15.
    Geng X, Zhou ZH, Smith-Miles K (2007) Automatic age estimation based on facial aging patterns. IEEE Trans Pattern Anal Mach Intell 29(12):2234–2240Google Scholar
  16. 16.
    Ghufran RS, Leu JS, Prakosa SW (2016) Improving the age estimation accuracy by a hybrid optimization scheme. Multimedia Tools and Applications 77:1–17.  https://doi.org/10.1007/s11042-017-4397-3 Google Scholar
  17. 17.
    Günay A, Nabiyev V (2017) A new facial age estimation method using centrally overlapped block based local texture features. Multimedia Tools and Applications 77:1–27.  https://doi.org/10.1007/s11042-017-4572-6 Google Scholar
  18. 18.
    Gunay A, Nabiyev VV (2008) Automatic age classification with lbp. In: 23rd International Symposium on Computer and Information Sciences, 2008. ISCIS’08. IEEE, pp 1–4.  https://doi.org/10.1109/ISCIS.2008.4717926
  19. 19.
    Guo G, Fu Y, Dyer CR, Huang TS (2008a) A probabilistic fusion approach to human age prediction. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops(CVPRW’08). IEEE, pp 1–6.  https://doi.org/10.1109/CVPRW.2008.4563041
  20. 20.
    Guo G, Fu Y, Huang TS, Dyer CR (2008b) Locally adjusted robust regression for human age estimation. In: 2008. WACV 2008. IEEE Workshop on Applications of computer vision. IEEE, pp 1-6Google Scholar
  21. 21.
    Guo G, Mu G, Fu Y, Dyer C, Huang T (2009a) A study on automatic age estimation using a large database. In: IEEE 12th International Conference on Computer Vision. IEEE, pp 1986–1991Google Scholar
  22. 22.
    Guo G, Mu G, Fu Y, Huang TS (2009b) Human age estimation using bio-inspired features. In: IEEE Conference on Computer Vision and Pattern Recognition(CVPR’09). IEEE, pp 112–119Google Scholar
  23. 23.
    Guo G (2012) Human age estimation and sex classification. In: Video Analytics for Business Intelligence. Springer, pp 101–131.  https://doi.org/10.1007/978-3-642-28598-1_4
  24. 24.
    Han H, Otto C, Jain AK (2013) Age estimation from face images: Human vs. machine performance. In: 2013 International Conference on Biometrics(ICB). IEEE, pp 1–8.  https://doi.org/10.1109/ICB.2013.6613022
  25. 25.
    Hayashi J, Yasumoto M, Ito H, Koshimizu H (2001) Method for estimating and modeling age and gender using facial image processing. In: Seventh International Conference on Virtual Systems and Multimedia. IEEE, pp 439–448.  https://doi.org/10.1109/VSMM.2001.969698
  26. 26.
    Horng WB, Lee CP, Chen CW (2001) Classification of age groups based on facial features. Tamkang J Sci Eng 4(3):183–192Google Scholar
  27. 27.
    Huerta I, Fernández C, Segura C, Hernando J, Prati A (2015) A deep analysis on age estimation. Pattern Recogn Lett 68:239–249.  https://doi.org/10.1016/j.patrec.2015.06.006 Google Scholar
  28. 28.
    Jain A, Nandakumar K, Ross A (2005) Score normalization in multimodal biometric systems. Pattern Recogn 38(12):2270–2285.  https://doi.org/10.1016/j.patcog.2005.01.012 Google Scholar
  29. 29.
    Kilinc M, Akgul YS (2013) Automatic human age estimation using overlapped age groups. In: Computer Vision, Imaging and Computer Graphics. Theory and Application. Springer, pp 313–325.  https://doi.org/10.1007/978-3-642-38241-3_21
  30. 30.
    Kwon Y H, Lobo N (1999) Age classification from facial images. Comput Vis Image Underst 74(1):1–21.  https://doi.org/10.1006/cviu.1997.0549 Google Scholar
  31. 31.
    Lai D, Chen Y, Luo X, Du J, Wang T (2017) Age estimation with dynamic age range. Multimed Tools Appl 76(5):6551–6573.  https://doi.org/10.1007/s11042-015-3230-0 Google Scholar
  32. 32.
    Lanitis A (2002) On the significance of different facial parts for automatic age estimation. In: 14Th international conference on digital signal processing(DSP’02). IEEE, vol 2, pp 1027–1030Google Scholar
  33. 33.
    Lanitis A, Taylor CJ, Cootes TF (2002) Toward automatic simulation of aging effects on face images. IEEE Trans Pattern Anal Mach Intell 24(4):442–455.  https://doi.org/10.1109/34.993553 Google Scholar
  34. 34.
    Lanitis A, Draganova C, Christodoulou C (2004) Comparing different classifiers for automatic age estimation. IEEE Trans Syst Man Cybern Part B (Cybern) 34(1):621–628.  https://doi.org/10.1109/TSMCB.2003.817091 Google Scholar
  35. 35.
    Lemperle G, Holmes R, Cohen S, Lemperle S (2001) A classification of facial wrinkles. Plast Reconstr Surg 108(6):1735–1750Google Scholar
  36. 36.
    Liang Y, Wang X, Zhang L, Wang Z (2014) A hierarchical framework for facial age estimation. Math Probl Eng 2014.  https://doi.org/10.1155/2014/242846
  37. 37.
    Liu J, Ma Y, Duan L, Wang F, Liu Y (2014) Hybrid constraint svr for facial age estimation. Signal Process 94:576–582Google Scholar
  38. 38.
    Luu K, Ricanek K, Bui TD, Suen CY (2009) Age estimation using active appearance models and support vector machine regression. In: IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems(BTAS’09). IEEE, pp 1–5.  https://doi.org/10.1109/BTAS.2009.5339053
  39. 39.
    Matthews I, Baker S (2004) Active appearance models revisited. Int J Comput Vis 60(2):135–164Google Scholar
  40. 40.
    Minear M, Park DC (2004) A lifespan database of adult facial stimuli. Behav Res Methods Instrum Comput 36(4):630–633.  https://doi.org/10.3758/BF03206543 Google Scholar
  41. 41.
    Ng CC, Yap MH, Costen N, Li B (2014a) Automatic wrinkle detection using hybrid hessian filter. In: Asian Conference on Computer Vision. Springer, pp 609–622Google Scholar
  42. 42.
    Ng CC, Yap MH, Costen N, Li B (2014b) An investigation on local wrinkle-based extractor of age estimation. In: International conference on computer vision theory and applications(VISAPP), IEEE, vol 1, pp 675–681Google Scholar
  43. 43.
    Nguyen DT, Cho SR, Shin KY, Bang JW, Park KR (2014) Comparative study of human age estimation with or without preclassification of gender and facial expression. The Scientific World JournalGoogle Scholar
  44. 44.
    Nguyen DT, Cho SR, Pham TD, Park KR (2015) Human age estimation method robust to camera sensor and/or face movement. Sensors 15(9):21,898–21,930Google Scholar
  45. 45.
    Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on featured distributions. Pattern Recogn 29 (1):51–59.  https://doi.org/10.1016/0031-3203(95)00067-4 Google Scholar
  46. 46.
    Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987.  https://doi.org/10.1109/TPAMI.2002.1017623 zbMATHGoogle Scholar
  47. 47.
    Ouloul IM, Afdel K, Amghar A (2016) Age estimation using local matched filter binary pattern. In: 2016 IEEE/ACS 13Th international conference of computer systems and applications (AICCSA). IEEE, pp 1-5.  https://doi.org/10.1109/AICCSA.2016.7945649
  48. 48.
    Panis G, Lanitis A, Tsapatsoulis N, Cootes TF (2016) Overview of research on facial ageing using the fg-net ageing database. IET Biom 5(2):37–46.  https://doi.org/10.1049/iet-bmt.2014.0053 Google Scholar
  49. 49.
    Pietikäinen M, Ojala T, Xu Z (2000) Rotation-invariant texture classification using feature distributions. Pattern Recogn 33(1):43–52.  https://doi.org/10.1016/S0031-3203(99)00032-1 Google Scholar
  50. 50.
    Pontes JK, Britto AS, Fookes C, Koerich AL (2016) A flexible hierarchical approach for facial age estimation based on multiple features. Pattern Recogn 54:34–51Google Scholar
  51. 51.
    Ross AA, Govindarajan R (2005) Feature level fusion of hand and face biometrics. In: Defense and Security, International Society for Optics and Photonics, pp 196–204.  https://doi.org/10.1117/12.606093
  52. 52.
    Thukral P, Mitra K, Chellappa R (2012) A hierarchical approach for human age estimation. In: IEEE International conference on acoustics, Speech and Signal Processing (ICASSP). IEEE, pp 1529–1532.  https://doi.org/10.1109/ICASSP.2012.6288182
  53. 53.
    Txia JD, Huang CL (2009) Age estimation using aam and local facial features. In: Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing. IEEE, pp 885–888.  https://doi.org/10.1109/IIH-MSP.2009.142
  54. 54.
    Vieira TF, Bottino A, Laurentini A, De Simone M (2014) Detecting sibli‘ngs in image pairs. Vis Comput 30(12):1333–1345.  https://doi.org/10.1007/s00371-013-0884-3 Google Scholar
  55. 55.
    Wang X, Guo R, Kambhamettu C (2015) Deeply-learned feature for age estimation. In: 2015 IEEE Winter Conference on Applications of computer vision (WACV). IEEE, pp 534–541Google Scholar
  56. 56.
    Wiskott L, Krüger N, Kuiger N, Von Der Malsburg C (1997) Face recognition by elastic bunch graph matching. IEEE Transactions on pattern analysis and machine intelligenceGoogle Scholar
  57. 57.
    Yan S, Wang H, Tang X, Huang TS (2007) Learning auto-structured regressor from uncertain nonnegative labels. In: IEEE 11th International Conference on Computer Vision(ICCV’07). IEEE, pp 1–8Google Scholar
  58. 58.
    Yang M, Zhu S, Lv F, Yu K (2011) Correspondence driven adaptation for human profile recognition. In: IEEE Conference on Computer Vision and Pattern Recognition(CVPR’11). IEEE, pp 505–512Google Scholar
  59. 59.
    Ylioinas J, Hadid A, Hong X, Pietikäinen M (2013) Age estimation using local binary pattern kernel density estimate. In: International Conference on Image Analysis and Processing. Springer, pp 141–150.  https://doi.org/10.1007/978-3-642-41181-6_15
  60. 60.
    Zhang W, Shan S, Gao W, Chen X, Zhang H (2005) Local gabor binary pattern histogram sequence (lgbphs): a novel non-statistical model for face representation and recognition. In: Tenth IEEE international conference on computer vision(ICCV’05. IEEE, vol 1, pp 786–791.  https://doi.org/10.1109/ICCV.2005.147
  61. 61.
    Zhang B, Zhang L, Zhang L, Karray F (2010) Retinal vessel extraction by matched filter with first-order derivative of gaussian. Comput Biol Med 40(4):438–445Google Scholar
  62. 62.
    Zhang L, Zhou Z, Li H (2012) Binary gabor pattern: An efficient and robust descriptor for texture classification. In: 19th IEEE International Conference on Image Processing(ICIP’12). IEEE, pp 81–84.  https://doi.org/10.1109/ICIP.2012.6466800

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Metrology and Information Processing LabIbnou Zohr UniversityAgadirMorocco
  2. 2.Computer Systems and Vision LabIbnou Zohr UniversityAgadirMorocco

Personalised recommendations