Advertisement

Multimedia Tools and Applications

, Volume 77, Issue 23, pp 31427–31445 | Cite as

An efficient resource allocation scheme for VoD services over window-based P2P networks

  • Noé Torres-Cruz
  • Mario E. Rivero-Angeles
  • Gerardo Rubino
  • Ricardo Menchaca-Mendez
  • Rolando Menchaca-Mendez
Article
  • 54 Downloads

Abstract

In this paper we describe a novel scheme that efficiently distributes the resources provided by seeders in a P2P network for Video on Demand (VoD) services. In the proposed scheme, that we have called Prioritized-Windows Distribution (PWD), the amount of seeders’ resources assigned to a peer depends on its current progress in the process of downloading a video which is divided into ordered fragments (windows). We demonstrate through a fluid model analysis and Markov chain numerical evaluations that PWD improves the P2P network performance in terms of the level of cooperation that is required from seeders to keep the system under abundance conditions. Additionally, we analyze the performance of the system as a function of two parameters that highly influence the Quality of Service (QoS) perceived by the users, namely, the initial playback delay and the time required to download the video. Our results show that PWD outperforms previous proposals.

Keywords

Video on demand (VoD) Peer to peer (P2P) network Resource allocation Markovian model Fluid model Video quality of service (QoS) 

References

  1. 1.
    Amjun N et al (2017) Survey on peer-assisted content delivery networks. Comput Netw 116:79–65CrossRefGoogle Scholar
  2. 2.
    Baez-Esquivel E, Rivero-Angeles ME, Rubino G (2013) Priority scheme for window-based video-on-demand transmission on BitTorrent-like peer-to-peer networks. In: Proceedings of IEEE international conference on communications (ICIC), pp 3000–3005Google Scholar
  3. 3.
    Bethanabhotla D, Caire G, Neely MJ (2015) Adaptive video streaming for wireless networks with multiple users and helpers. IEEE Trans Commun 63(1):268–285Google Scholar
  4. 4.
    Brienza S et al (2015) A survey on energy efficiency in P2P systems: File distribution, content streaming, and epidemics. ACM Comput Surv 48(3):1–37MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chang L, Pan J, Xing M (2013) Effective utilization of user resources in PA-VoD systems with channel heterogeneity. IEEE J Sel Areas Commun 31(9):227–236CrossRefGoogle Scholar
  6. 6.
    Ciullo D et al (2014) Peer-assisted VoD systems: An efficient modeling framework. IEEE Trans Parallel Distrib Syst 25(7):1852–1863CrossRefGoogle Scholar
  7. 7.
    Dimopoulos G, Barlet-Ros P, Sanjuas-Cuxart J (2013) Analysis of YouTube user experience from passive measurements. In: Proceedings of IEEE 9th international conference on network and service management (CNSM), pp 260–267Google Scholar
  8. 8.
    Dubin R et al (2015) Hybrid clustered peer-assisted DASH-SVC system. In: IEEE International Conference on CIT/UCC/DAS/PICOM, pp 1651–1656Google Scholar
  9. 9.
    Faiqurahman M, Kistijantoro AI (2015) Implementation of modified probabilistic caching schema on Bittorrent protocol for video on demand content. In: International Seminar on Intelligent Technology and Its Applications (ISITIA), pp 357–362Google Scholar
  10. 10.
    Haddi FL, Benchiba M (2015) A survey of incentive mechanisms in static and mobile P2P systems. J Netw Comput Appl 58:108–118CrossRefGoogle Scholar
  11. 11.
    Hossfeld T et al (2012) Initial delay vs. interruptions: between the devil and the deep blue sea. In: IEEE 4th international workshop on quality of multimedia experience (QoMEX), pp 1–6Google Scholar
  12. 12.
    Huang G et al (2014) An upload bandwidth allocation algorithm in data scheduling of P2P VoD system. In: Proceedings of IEEE 5th international conference on software engineering and service science, pp 435–438Google Scholar
  13. 13.
    Huang G, Kong L, Wu K, Chen Z (2017) A Bandwidth allocation policy for helpers in cloud-assisted p2p video-on-demand systems. In: Proc. 5th international conference on advanced cloud and big data (CBD)Google Scholar
  14. 14.
    Huang S, Izquierdo E, Hao P (2016) Bandwidth-efficient packet scheduling for live streaming with network coding. IEEE Trans Multimed 18(4):752–763CrossRefGoogle Scholar
  15. 15.
    Jia S et al (2017) Modelling of P2P-based video sharing performance for content-oriented. Mob Inf Syst 2016(1319497):13.  https://doi.org/10.1155/2016/1319497 Google Scholar
  16. 16.
    Kim J, Caire G, Molisch AF (2016) Quality-aware streaming and scheduling for device-to-device video delivery. IEEE/ACM Trans Netw 24(4):2319–2331CrossRefGoogle Scholar
  17. 17.
    Liang C, Fu Z, Liu Y, Wu CW (2010) Incentivized peer-assisted streaming for on-demand services. IEEE Trans Parallel Distrib Syst 21:9CrossRefGoogle Scholar
  18. 18.
    Mostafavi S, Dehghan M (2016) Game theoretic bandwidth procurement mechanisms in live P2P streaming systems. Multimed Tools Appl 75(14):8545–8568CrossRefGoogle Scholar
  19. 19.
    Global Internet Phenomena (2016) Latin America and north America report. https://www.sandvine.com
  20. 20.
    Qiu D, Srikant R (2004) Modeling and performance analysis of BitTorrent-like peer-to-peer networks. In: Conference on applications, technologies, architectures and protocols for computer communicationsGoogle Scholar
  21. 21.
    Ramos-Munoz JJ et al (2014) Characteristics of mobile Youtube traffic. IEEE Wirel Commun 21(1):18–25CrossRefGoogle Scholar
  22. 22.
    Rivero-Angeles ME, Rubino G (2010) Priority-based scheme for file distribution in peer-to-peer networks. In: Proceedings of IEEE international conference on communications (ICIC), pp 1–6Google Scholar
  23. 23.
    Rohmer T, Nakib A, Nafaa A (2014) Priori knowledge guided approach for optimal peer selection in P2P VoD systems. IEEE Trans Netw Serv Manag 11 (3):350–362CrossRefGoogle Scholar
  24. 24.
    Rohmer T, Nakib A, Nafaa A (2015) A learning-based resource allocation approach for P2P streaming systems. IEEE Netw 29(1):4–11CrossRefGoogle Scholar
  25. 25.
    Romero P, Robledo F, Rodriguez-Boca P, Rostagnol C (2014) Analysis and design of peer-assisted video-on-demand services. Int Trans Oper Res 21(4):559–579MathSciNetCrossRefGoogle Scholar
  26. 26.
    Romero P, Robledo F, Rodriguez-Boca P, Rostagnol C (2015) Lyapunov stability and performance of user-assisted Video-on-Demand services. Comput Netw 79(14):203–205CrossRefGoogle Scholar
  27. 27.
    Torres-Cruz N et al (2017) A window-based, server-assisted P2P network for VoD services with QoE guarantees. Mob Inf Syst 2017(2084684):18.  https://doi.org/10.1155/2017/2084684 Google Scholar
  28. 28.
    Traverso S et al (2013) Temporal locality in today’s content caching: Why it matters and how to model it. ACM SIGCOMM Comput Commun Rev 43(5):5–12CrossRefGoogle Scholar
  29. 29.
    Wichtlhuber M et al (2015) QTrade: a quality of experience based peercasting trading scheme. In: IEEE international conference on peer-to-peer computing (P2P), pp. 1–10Google Scholar
  30. 30.
    Wu W, Ma RTB, Lui JCS (2014) Distributed caching via rewarding: An incentive scheme design in P2P-VoD systems. IEEE Trans Parallel Distrib Syst 25 (3):612–621CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centro de Investigación en ComputaciónInstituto Politécnico NacionalCiudad de MéxicoMéxico
  2. 2.UPIITAInstituto Politécnico NacionalCiudad de MéxicoMéxico
  3. 3.Campus Universitaire de BeaulieuINRIA Rennes - Bretagne AtlantiqueRennes CedexFrance

Personalised recommendations