Advertisement

Multimedia Tools and Applications

, Volume 77, Issue 23, pp 31041–31066 | Cite as

Improving the classification of rotated images by adding the signal and magnitude information to a local texture descriptor

  • Raissa Tavares Vieira
  • Tamiris Trevisan Negri
  • Adilson Gonzaga
Article
  • 89 Downloads

Abstract

Texture image classification, especially for images with substantial changes in rotation, illumination, scale and point of view, is a fundamental and challenging problem in the field of computer vision. Natural images acquired under uncontrolled environments have textures with unknown orientation angles. Therefore, it is difficult to identify the same known texture at different acquisition angles. A common solution is image rotation by means of an interpolation technique. However, texture descriptors are not effective enough when two similar textures acquired at different angles are compared. In this work, we propose a simple and efficient image descriptor, called Completed Local Mapped Pattern (CLMP), and apply it to the texture classification of rotated images. This new approach is an improvement over the previously published Local Mapped Pattern (LMP) descriptor because the new approach includes the signal and the magnitude information. This innovation is more discriminating and robust for the description of rotated textures at arbitrary angles. We used two image datasets to validate the proposed descriptor: the Kylberg Sintorn Rotation Dataset and the Brodatz Texture Rotation Dataset. We also introduced a new texture dataset, which contains rotated texture images from Brodatz’s Album. The database contains images of natural textures that have been rotated by both hardware and interpolation methods. We presented an evaluation of the influence of the interpolation method on image rotation, compared with different descriptors in the literature. The experimental results show that our proposed CLMP descriptor outperforms the widely used Completed Local Binary Pattern (CLBP) descriptor and the recently published Sampled Local Mapped Pattern Magnitude (SLMP_M) descriptor. Our results also demonstrate that the choice of interpolation method influences the descriptive capability of each descriptor.

Keywords

Local descriptors Rotated textures Interpolation methods Image analysis 

Notes

Acknowledgments

The authors would like to thank the São Paulo Research Foundation (FAPESP), grant #2015/20812−5, for the financial support of this research.

References

  1. 1.
    Andrearczyk V, Whelan PF (2016) Using filter banks in convolutional neural networks for texture classification. Pattern Recogn Lett 84:63–69CrossRefGoogle Scholar
  2. 2.
    Arivazhagan S, Ganesan L, Padam SP (2006) Texture classification using Gabor wavelets based rotation invariant features. Pattern Recogn Lett 27(16):1976–1982CrossRefGoogle Scholar
  3. 3.
    Brodatz P (1966) Textures: a photographic album for artists and designers. Dover PubnsGoogle Scholar
  4. 4.
    Brodatz Texture Rotation Dataset (2017) Available online at <http://imagem.sel.eesc.usp.br/base/Brodatz_rotated/index.html>. Accessed 7 Mar 2018
  5. 5.
    Chan TH, Jia K, Gao S, Lu J, Zeng Z, Ma Y (2015) PCANet: a simple deep learning baseline for image classification? IEEE Trans Image Process 24(12):5017–5032MathSciNetCrossRefGoogle Scholar
  6. 6.
    Charalampidis D, Kasparis T (2002) Wavelet-based rotational invariant roughness features for texture classification and segmentation. IEEE Trans Image Process 11(8):825–837CrossRefGoogle Scholar
  7. 7.
    Chen C, Zhang B, Su H, Li W, Wang L (2016) Land-use scene classification using multi-scale completed local binary patterns. SIViP 10(4):745–752CrossRefGoogle Scholar
  8. 8.
    Cimpoi M, Maji S, Vedaldi A (2015) Deep filter banks for texture recognition and segmentation. In: Computer vision and pattern recognition (CVPR), 2015 IEEE conference on, pp 3828–3836Google Scholar
  9. 9.
    Cun H, Fei H, Hassanien AE, Xiao K Texture-based rotation-invariant histograms of oriented gradients. In: Computer Engineering Conference (ICENCO), 2015 11th International. IEEE, pp 223–228Google Scholar
  10. 10.
    Deng H, David AC (2004) Gaussian MRF rotation-invariant features for image classification. IEEE Trans Pattern Anal Mach Intell 26(7):951–955CrossRefGoogle Scholar
  11. 11.
    Dharmagunawardhana C, Mahmoodi S, Bennett M, Niranjan M (2016) Rotation invariant texture descriptors based on gaussian markov random fields for classification. Pattern Recogn Lett 69:15–21CrossRefGoogle Scholar
  12. 12.
    Do MN, Vetterli M (2002) Rotation invariant texture characterization and retrieval using steerable wavelet-domain hidden Markov models. IEEE Transactions on Multimedia 4(4):517–527CrossRefGoogle Scholar
  13. 13.
    Fernández A, Ghita O, González E, Bianconi F, Whelan PF (2011) Evaluation of robustness against rotation of LBP CCR and ILBP features in granite texture classification. Mach Vis Appl 22(6):913–926CrossRefGoogle Scholar
  14. 14.
    Ferraz CT, Gonzaga A (2016) Object classification using a local texture descriptor and a support vector machine. Multimedia Tools and Applications 1–33Google Scholar
  15. 15.
    Ferraz CT, Pereira Jr O, Gonzaga A (2014) Feature description based on center-symmetric local mapped patterns. In: Proceedings of the 29th Annual ACM Symposium on Applied Computing. ACM, pp 39–44Google Scholar
  16. 16.
    Guo Z, Zhang L, Zhang D (2010) Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recogn 43(3):706–719CrossRefGoogle Scholar
  17. 17.
    Guo Z, Lei Z, David Z (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 19(6):1657–1663MathSciNetCrossRefGoogle Scholar
  18. 18.
    Guo Z, Li Q, You J, Zhang D, Liu W (2012) Local directional derivative pattern for rotation invariant texture classification. Neural Comput & Applic 21(8):1893–1904CrossRefGoogle Scholar
  19. 19.
    Jafari-Khouzani K, Soltanian-Zadeh H (2005) Rotation-invariant multiresolution texture analysis using radon and wavelet transforms. IEEE Trans Image Process 14(6):783–795MathSciNetCrossRefGoogle Scholar
  20. 20.
    Jafari-Khouzani K, Soltanian-Zadeh H (2005) Radon transform orientation estimation for rotation invariant texture analysis. IEEE Trans Pattern Anal Mach Intell 27(6):1004–1008CrossRefGoogle Scholar
  21. 21.
    Jin H, Liu Q, Lu H, Tong X (2004) Face detection using improved LBP under Bayesian framework. In: Image and Graphics (ICIG’04), Third International Conference on. IEEE, pp 306–309Google Scholar
  22. 22.
    Jing H, Xinge Y, Yuan Y, Feng Y, Lin L (2010) Rotation invariant iris feature extraction using Gaussian Markov random fields with non-separable wavelet. Neurocomputing 73(4):883–894Google Scholar
  23. 23.
    Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105Google Scholar
  24. 24.
    Kun L, Henrik S, Thorsten S, Thomas B, Klaus P, Thomas B, Olaf R (2013) Rotation-invariant hog descriptors using fourier analysis in polar and spherical coordinates. Int J Comput Vis 106(3):342–346MathSciNetzbMATHGoogle Scholar
  25. 25.
    Kylberg G, Sintorn IM (2016) On the influence of interpolation method on rotation invariance in texture recognition. EURASIP Journal on Image and Video Processing 2016(1):17CrossRefGoogle Scholar
  26. 26.
    Kylberg G, Sintorn I M, Kylberg Sintorn Rotation dataset (2015) Available online at <http://www.cb.uu.se/~gustaf/KylbergSintornRotation/>. Accessed 6 Aug 2017
  27. 27.
    Li Z, Liu G, Yang Y, You J (2012) Scale- and rotation-invariant local binary pattern using scale-adaptive Texton and subuniform-based circular shift. IEEE Trans Image Process 21(4):2130–2140MathSciNetCrossRefGoogle Scholar
  28. 28.
    Liu L, Fieguth P, Guo Y, Wang X, Pietikäinen M (2017) Local binary features for texture classification: taxonomy and experimental study. Pattern Recogn 62:135–160CrossRefGoogle Scholar
  29. 29.
    Negri TT, Zhou F, Obradovic Z, Gonzaga A (2017) A robust descriptor for color texture classification under varying illumination. In: Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP), 2017 12th International Joint Conference on, vol 4, pp 378–388Google Scholar
  30. 30.
    Nosaka R, Fukui K (2014) Hep-2 cell classification using rotation invariant co-occurrence among local binary patterns. Pattern Recogn 47(7):2428–2436CrossRefGoogle Scholar
  31. 31.
    Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987CrossRefGoogle Scholar
  32. 32.
    Pillai A, Soundrapandiyan R, Satapathy S, Satapathy SC, Jung KH, Krishnan R (2018) Local diagonal extrema number pattern: a new feature descriptor for face recognition. Futur Gener Comput Syst 81:297–306CrossRefGoogle Scholar
  33. 33.
    Pun CM, Lee MC (2003) Log-polar wavelet energy signatures for rotation and scale invariant texture classification. IEEE Trans Pattern Anal Mach Intell 25(5):590–603CrossRefGoogle Scholar
  34. 34.
    Rassem TH, Khoo BE, Makbol NM, Alsewari AA (2017) Multi-scale colour completed local binary patterns for scene and event sport image categorisation. IAENG Int J Comput Sci 44(2)Google Scholar
  35. 35.
    Ryu J, Hong S, Yang HS (2015) Sorted consecutive local binary pattern for texture classification. IEEE Trans Image Process 24(7):2254–2265MathSciNetCrossRefGoogle Scholar
  36. 36.
    Sánchez-Yáñez RE, Kurmyshev EV, Fernández A (2003) One-class texture classifier in the CCR feature space. Pattern Recogn Lett 24(9):1503–1511CrossRefGoogle Scholar
  37. 37.
    Sifre L, Mallat S (2012) Rotation, scaling and deformation invariant scattering for texture discrimination. In: Computer vision and pattern recognition (CVPR), 2013 IEEE conference on, pp 1233–1240Google Scholar
  38. 38.
    Song Y, Zhang F, Li Q, Huang H, O’Donnell LJ, Cai W (2017) Locally-transferred fisher vectors for texture classification. Proc IEEE Conf Comput Vis Pattern Recognit 22-29:4912–4920.  https://doi.org/10.1109/ICCV.2017.526 CrossRefGoogle Scholar
  39. 39.
    Souza JM, Vieira RT, Gonzaga A (2015) Analysis of iris texture under pupil contraction/dilation for biometric recognition. In: Workshop de Visão Computacional, pp 128–133Google Scholar
  40. 40.
    Tamrakar D, Khanna P (2016) Noise and rotation invariant RDF descriptor for palmprint identification. Multimedia Tools and Applications 75(10):5777–5794CrossRefGoogle Scholar
  41. 41.
    Vieira RT, Negri TT, Gonzaga A (2016) Robustness of rotation invariant descriptors for texture classification. In: International Symposium on Visual computing. Springer International Publishing, pp 268–277Google Scholar
  42. 42.
    Vieira RT, Negri T, Cavichiolli A, Gonzaga A (2017) Human epithelial type 2 (HEp-2) cell classification by using a multiresolution texture descriptor. In: Computer vision (WVC), 2017 workshop of, pp 1–6Google Scholar
  43. 43.
    Wan S, Lee HC, Huang X, Xu T, Xu T, Zeng X, Zhou C (2017) Integrated local binary pattern texture features for classification of breast tissue imaged by optical coherence microscopy. Med Image Anal 38:104–116CrossRefGoogle Scholar
  44. 44.
    Yadav AR, Anand RS, Dewal ML, Gupta S (2017) Binary wavelet transform-based completed local binary pattern texture descriptors for classification of microscopic images of hardwood species. Wood Sci Technol 51(4):909–927CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of São PauloSão CarlosBrazil
  2. 2.Science and Technology of São PauloFederal Institute of EducationAraraquaraBrazil

Personalised recommendations