Advertisement

Multimedia Tools and Applications

, Volume 77, Issue 23, pp 31095–31114 | Cite as

Sparse representation based facial image compression via multiple dictionaries and separated ROI

  • Amir Masoud Taheri
  • Homayoun Mahdavi-Nasab
Article
  • 19 Downloads

Abstract

Constant increasing of visual information necessitates most efficient image compression schemes for saving storage space or reducing required transmission bandwidth. In compressing a class of images, such as a fingerprint database, facial images of an organization or MR images of a hospital, overall information redundancy is increased and compression becomes more significant. In this paper, image signal sparse representation and RLS-DLA dictionary design are utilized for compressing whole or part of a facial image database by exploiting the structural similarity of the class members. In the proposed algorithm, images are compressed by multiple overcomplete learned dictionaries which are designed to provide least required bit-rates for different target qualities. To fortify the process, more interested head and shoulders regions of the images are extracted to provide dictionary training sets. A combined edge detection and active contour segmentation method is used for a robust ROI extraction. Simulation results show superior performance of about 0.3 to 1.5 dB quality enhancement in terms of PSNR, for similar compression ratios compared to JPEG2000 standard for the complete image, and a near loss-less compression for restoring the ROI.

Keywords

Sparse representation Image compression Dictionary learning RLS-DLA JPEG2000 ROI 

References

  1. 1.
    Agarwal A, Anandkumar A, Jain P, Netrapalli P, Tandon R (2014) Learning sparsely used overcomplete dictionaries via alternating minimization. Conference of Learning Theory, p 123–137Google Scholar
  2. 2.
    Aharon M, Elad M, Bruckstein A (2006) K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54:4311–4322CrossRefGoogle Scholar
  3. 3.
    Amaldi E, Kann V (1998) On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems. Theor Comput Sci 209(1):237–260MathSciNetCrossRefGoogle Scholar
  4. 4.
    Blake A, Isard M (2012) Active contours: the application of techniques from graphics, vision, control theory and statistics to visual tracking of shapes in motion. Springer Science & Business Media, BerlinGoogle Scholar
  5. 5.
    Bruckstein AM, Donoho DL, Elad M (2009) From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev 51(1):34–81MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bryt O, Elad M (2008) Compression of facial images using the K-SVD algorithm. J Vis Commun Image Represent 19(4):270–282CrossRefGoogle Scholar
  7. 7.
    Bryt O, Elad M (2008) Improving the K-SVD facial image compression using a linear deblocking method. In: Proc. 25th IEEE Conf. Electrical and Electronics Engineers, Israel, pp 533–537Google Scholar
  8. 8.
    Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vis 22(1):61–79CrossRefGoogle Scholar
  9. 9.
    Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277CrossRefGoogle Scholar
  10. 10.
    Cotter SF, Rao BD, Engan K, Kreutz-Delgado K (2005) Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans Signal Process 53(7):2477–2488MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dong W, Zhang L, Shi G, Wu X (2011) Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans Image Process 20(7):1838–1857MathSciNetCrossRefGoogle Scholar
  12. 12.
    Elad M (2010) Sparse and redundant representations: From theory to applications in signal and image processing. Springer, BerlinCrossRefGoogle Scholar
  13. 13.
    Elad M (2012) Sparse and redundant representation modeling-What next? IEEE Signal Process Lett 19:922–928CrossRefGoogle Scholar
  14. 14.
    Elad M, Figueiredo MAT, Ma Y (2010) On the role of sparse and redundant representations in image processing. Proc IEEE 98:972–982CrossRefGoogle Scholar
  15. 15.
    Engan K, Aase SO, Husoy JH (1999) Method of optimal directions for frame design. In: Proceedings of IEEE Int. Conf. Acoust. Speech, Signal Process. ICASSP, vol 5Google Scholar
  16. 16.
    Gharavi-Alkhansari M, Huang TS (1998) A fast orthogonal matching pursuit algorithm. In: Proceedings of the IEEE Int. Conf. Acoustics, Speech and Signal Process, vol 3, pp 1389–1392Google Scholar
  17. 17.
    He N, Wang J-B, Zhang L-L, Xu G-M, Lu K (2016) Non-local sparse regularization model with application to image denoising. Multimed Tools Appl 75(5):2579–2594CrossRefGoogle Scholar
  18. 18.
    Horev I, Bryt O, Rubinstein R (2012) Adaptive image compression using sparse dictionaries. In: 19th Int. Conf. Systems, Signals and Image Process. (IWSSIP), pp 592–595Google Scholar
  19. 19.
    Jiang J, Hu R, Han Z, Wang Z (2014) Low resolution and low quality face super-resolution in monitoring scene via support driven sparse coding. J Signal Process Sys 75(3):245–256CrossRefGoogle Scholar
  20. 20.
    Liu E, Temlyakov VN (2012) The orthogonal super greedy algorithm and applications in compressed sensing. IEEE Trans Inf Theory 58(4):2040–2047MathSciNetCrossRefGoogle Scholar
  21. 21.
    Mairal J, Elad M, Sapiro G (2008) Sparse representation for color image restoration. IEEE Trans Image Process 17(1):53–69MathSciNetCrossRefGoogle Scholar
  22. 22.
    Mei X, Ling H (2011) Robust visual tracking and vehicle classification via sparse representation. IEEE Trans Pattern Anal Mach Intell 33(11):2259–2272CrossRefGoogle Scholar
  23. 23.
    Nejati M, Samavi S, Karimi N, Soroushmehr SMR, Najarian K (2016) Boosted Dictionary Learning for Image Compression. IEEE Trans Image Process 25(10):4900–4915MathSciNetCrossRefGoogle Scholar
  24. 24.
    Ram I, Cohen I, Elad M (2014) Facial Image Compression using Patch-Ordering-Based Adaptive Wavelet Transform. IEEE Signal Process Lett 21(10):1270–1274CrossRefGoogle Scholar
  25. 25.
    Rubinstein R, Bruckstein AM, Elad M (2010) Dictionaries for sparse representation modeling. Proc IEEE 98:1045–1057CrossRefGoogle Scholar
  26. 26.
    Rubinstein R, Peleg T, Elad M (2013) Analysis K-SVD: A dictionary-learning algorithm for the analysis sparse model. IEEE Trans Signal Process 61:661–677MathSciNetCrossRefGoogle Scholar
  27. 27.
    Shao G, Wu Y, Liu X, Guo T (2014) Fingerprint compression based on sparse representation. IEEE Trans Image Process 23(2):489–501MathSciNetCrossRefGoogle Scholar
  28. 28.
    Shi YQ, Sun H (2008) Image and Video Compression for Multimedia Engineering: Fundamentals, Algorithms, and Standards. CRC Press, Boca RatonCrossRefGoogle Scholar
  29. 29.
    Skretting K, Engan K (2010) Recursive least squares dictionary learning algorithm. IEEE Trans Signal Process 58(4):2121–2130MathSciNetCrossRefGoogle Scholar
  30. 30.
    Skretting K, Engan K (2011) Image compression using learned dictionaries by RLS-DLA and compared with K-SVD. ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process, pp 1517–1520Google Scholar
  31. 31.
    Sun J, Lu J, Xu T, Bi J, (2015) Multi-view sparse co-clustering via proximal alternating linearized minimization. 32nd International Conference on International Conference on Machine Learning, vol 37, pp 757–766Google Scholar
  32. 32.
    Taheri AM, Mahdavi-Nasab H (2015) Facial image compression using adaptive multiple dictionaries. In: 9th Iranian Conf. Machine Vision and Image Process. (MVIP), pp 92–95Google Scholar
  33. 33.
    Taubman D, Marcellin M (2012) JPEG2000 Image Compression Fundamentals, Standards and Practice: Image Compression Fundamentals, Standards and Practice, vol 642. Springer Science & Business Media, BerlinGoogle Scholar
  34. 34.
    Tošić I, Frossard P (2011) Dictionary learning. IEEE Signal Process Mag 28(2):27–38CrossRefGoogle Scholar
  35. 35.
    Tropp JA (2004) Greed is good: Algorithmic results for sparse approximation. IEEE Trans Inf Theory 50:2231–2242MathSciNetCrossRefGoogle Scholar
  36. 36.
    Tropp JA, Wright SJ (2010) Computational methods for sparse solution of linear inverse problems. Proc IEEE 98:948–958CrossRefGoogle Scholar
  37. 37.
    Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31:210–227CrossRefGoogle Scholar
  38. 38.
    Xing X, Qiu F, Xu X, Qing C, Wu Y (2017) Robust object tracking based on sparse representation and incremental weighted PCA. Multimed Tools Appl 76(2):2039–2057CrossRefGoogle Scholar
  39. 39.
    Yang J, Yu K, Gong Y, Huang T (2009) Linear spatial pyramid matching using sparse coding for image classification. In: IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pp 1794–1801Google Scholar
  40. 40.
    Yang J, Wright J, Huang T, Ma Y (2010) Image Super-Resolution via Sparse Representation. IEEE Trans Image Process 19:2861–2873MathSciNetCrossRefGoogle Scholar
  41. 41.
    Zhang H, Ip HHS (Oct. 2015) Iterative semi-supervised sparse coding model for image classification. J Signal Process Sys 81(1):99–110CrossRefGoogle Scholar
  42. 42.
    Zhang Z, Xu Y, Yang J, Li X, Zhang D (2015) A survey of sparse representation: algorithms and applications. Access IEEE 3:490–530CrossRefGoogle Scholar
  43. 43.
    Zhao P, Dong J, Wang L (2014) Image compression algorithm based on automatic extracted ROI. 11th Int. Conf. Fuzzy Sys. Knowledge Discovery (FSKD), pp 788–792Google Scholar
  44. 44.
    Zhou L, Lu Z, Leung H, Shang L (2014) Spatial temporal pyramid matching using temporal sparse representation for human motion retrieval. Vis Comput 30(6–8):845–854CrossRefGoogle Scholar
  45. 45.
    Zhu J-Y, Wang Z-Y, Zhong R, Qu S-M (2015) Dictionary based surveillance image compression. J Vis Commun Image Represent 31:225–230CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical Engineering, Najafabad BranchIslamic Azad UniversityNajafabadIran
  2. 2.Digital Processing and Machine Vision Research Center, Najafabad BranchIslamic Azad UniversityNajafabadIran

Personalised recommendations