Multimedia Tools and Applications

, Volume 77, Issue 22, pp 30067–30088 | Cite as

Single object tracking using particle filter framework and saliency-based weighted color histogram

  • Mai Thanh Nhat Truong
  • Myeongsuk Pak
  • Sanghoon KimEmail author


Despite many years of research, object tracking remains a challenging problem, not only because of the variety of object appearances, but also because of the complexity of surrounding environments. In this research, we present an algorithm for single object tracking using a particle filter framework and color histograms. Particle filters are iterative algorithms that perform predictions in each iteration using particles, which are samples drawn from a statistical distribution. Color histograms are embedded in these particles, and the distances between histograms are used to measure likelihood between targets and observations. One downside of color histograms is that they ignore spatial information, which may produce tracking failure when objects appear that are similar in color. To overcome this disadvantage, we propose a saliency-based weighting scheme for histogram calculation. Given an image region, first its saliency map is generated. Next, its histogram is calculated based on the generated saliency map. Pixels located in salient regions have higher weights than those in others, which helps preserve the spatial information. Experimental results showed the efficiency of the proposed appearance model in object tracking under various conditions.


Object tracking Particle filter Color histogram Saliency map 



This study was funded by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2015R1D1A1A01057518).

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interests.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

(AVI 26.4 MB)

(AVI 26.8 MB)

(AVI 16.5 MB)

(AVI 16.7 MB)


  1. 1.
    Barthélemy Q, Larue A, Mars JI (2015) Color sparse representations for image processing: review, models, and prospects. IEEE Trans Image Process 24(11):3978–3989. MathSciNetCrossRefGoogle Scholar
  2. 2.
    Borji A, Itti L (2013) State-of-the-art in visual attention modeling. IEEE Trans Pattern Anal Mach Intell 35(1):185–207. CrossRefGoogle Scholar
  3. 3.
    Bostanci E, Kanwal N, Clark AF (2015) Augmented reality applications for cultural heritage using Kinect. Human-Centric Comput Informa Sci 5(1):1–18. CrossRefGoogle Scholar
  4. 4.
    Dinh TB, Yu Q, Medioni G (2014) Co-trained generative and discriminative trackers with cascade particle filter. Comput Vis Image Underst 119:41–56. CrossRefGoogle Scholar
  5. 5.
    Haug AJ (2012) Bayesian estimation and tracking: a practical guide. WileyGoogle Scholar
  6. 6.
    Hou X, Zhang L (2007) Saliency detection: a spectral residual approach. In: 2007 IEEE Conference on computer vision and pattern recognition, pp 1–8.
  7. 7.
    Isard M, Blake A (1998) Condensation-conditional density propagation for visual tracking. Int J Comput Vis 29(1):5–28. CrossRefGoogle Scholar
  8. 8.
    Jia X, Lu H, Yang MH (2012) Visual tracking via adaptive structural local sparse appearance model. In: 2012 IEEE Conference on computer vision and pattern recognition, pp 1822–1829.
  9. 9.
    Juhyun L, Hanbyul C, Kicheon H (2015) A fainting condition detection system using thermal imaging cameras based object tracking algorithm. J Converg 6(3):1–15Google Scholar
  10. 10.
    Klein G, Murray DW (2006) Full-3d edge tracking with a particle filter. In: Proceedings of the British machine vision conference, pp 114.1–114.10.
  11. 11.
    Kristan M, Matas J, Leonardis A, Vojíř T, Pflugfelder R, Fernández G, Nebehay G, Porikli F, C̆ehovin L (2016) A novel performance evaluation methodology for single-target trackers. IEEE Trans Pattern Anal Mach Intell 38(11):2137–2155. CrossRefGoogle Scholar
  12. 12.
    Li XR, Jilkov VP (2003) Survey of maneuvering target tracking. Part I. dynamic models. IEEE Trans Aerosp Electron Syst 39(4):1333–1364. CrossRefGoogle Scholar
  13. 13.
    Li P, Zhang T, Pece AE (2003) Visual contour tracking based on particle filters. Image Vis Comput 21(1):111–123. CrossRefGoogle Scholar
  14. 14.
    Li T, Bolic M, Djuric PM (2015) Resampling methods for particle filtering: classification, implementation, and strategies. IEEE Signal Process Mag 32(3):70–86. CrossRefGoogle Scholar
  15. 15.
    Lin S, Garratt MA, Lambert AJ (2017) Monocular vision-based real-time target recognition and tracking for autonomously landing an UAV in a cluttered shipboard environment. Auton Robot 41(4):881–901. CrossRefGoogle Scholar
  16. 16.
    Liu B, Yang L, Huang J, Meer P, Gong L, Kulikowski C (2010) Robust and fast collaborative tracking with two stage sparse optimization. In: Proceedings of the 11th European conference on computer vision: part IV, pp 624–637CrossRefGoogle Scholar
  17. 17.
    Mei X, Ling H (2009) Robust visual tracking using 1 minimization. In: 2009 IEEE 12th International conference on computer vision, pp 1436–1443.
  18. 18.
    Meshgi K, Oba S, Ishii S (2016) Robust discriminative tracking via query-by-bagging. In: 2016 13th IEEE International conference on advanced video and signal based surveillance (AVSS), pp 8–14.
  19. 19.
    Nummiaro K, Koller-Meier E, Gool LJV (2002) Object tracking with an adaptive color-based particle filter. In: Pattern Recognition, 24th DAGM symposium, Zurich, Switzerland, September 16-18, 2002, proceedings, pp 353–360. Google Scholar
  20. 20.
    Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66. CrossRefGoogle Scholar
  21. 21.
    Pham I, Polasek M (2014) Algorithm for military object detection using image data. In: 2014 IEEE/AIAA 33rd Digital avionics systems conference (DASC), pp 3D3–1–3D3–15.
  22. 22.
    Possegger H, Mauthner T, Bischof H (2015) In defense of color-based model-free tracking. In: 2015 IEEE Conference on computer vision and pattern recognition (CVPR), pp 2113–2120.
  23. 23.
    Ross DA, Lim J, Lin RS, Yang MH (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77(1):125–141. CrossRefGoogle Scholar
  24. 24.
    Sarif BA, Pourazad MT, Nasiopoulos P, Leung VC, Mohamed A (2015) Fairness scheme for energy efficient H.264/AVC-based video sensor network. Human-Centric Comput Inform Sci 5(1):7. CrossRefGoogle Scholar
  25. 25.
    Sevilla-Lara L, Learned-Miller E (2012) Distribution fields for tracking. In: 2012 IEEE Conference on computer vision and pattern recognition, pp 1910–1917.
  26. 26.
    Sidibé D, Fofi D, Mériaudeau F (2010) Using visual saliency for object tracking with particle filters. In: 2010 18th European signal processing conference, pp 1776–1780Google Scholar
  27. 27.
    Smeulders AWM, Chu DM, Cucchiara R, Calderara S, Dehghan A, Shah M (2014) Visual tracking: an experimental survey. IEEE Trans Pattern Anal Mach Intell 36(7):1442–1468. CrossRefGoogle Scholar
  28. 28.
    Su Y, Zhao Q, Zhao L, Gu D (2014) Abrupt motion tracking using a visual saliency embedded particle filter. Pattern Recogn 47(5):1826–1834. CrossRefGoogle Scholar
  29. 29.
    Sung Y, Kwak J, Park JH (2015) Graph-based motor primitive generation framework. Human-Centric Comput Inform Sci 5(1):35. CrossRefGoogle Scholar
  30. 30.
    Vega-Maldonado S, Wario F, Arámburo-Lizárraga J, Perez-Cisneros M, Cedano-Olvera M (2015) Visual registration and tracking for traffic monitoring. In: 2015 IEEE First international smart cities conference (ISC2), pp 1–6.
  31. 31.
    Vojir T, Noskova J, Matas J (2014) Robust scale-adaptive mean-shift for tracking. Pattern Recogn Lett 49:250–258. CrossRefGoogle Scholar
  32. 32.
    Yang H, Shao L, Zheng F, Wang L, Song Z (2011) Recent advances and trends in visual tracking: a review. Neurocomputing 74(18):3823–3831. CrossRefGoogle Scholar
  33. 33.
    Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. ACM Comput Surv 38(4):1–45. CrossRefGoogle Scholar
  34. 34.
    Yoo S, Kim W, Kim C (2014) Saliency combined particle filtering for aircraft tracking. J Signal Process Syst 76(1):19–31. CrossRefGoogle Scholar
  35. 35.
    Yuan Y, Gao C, Liu Q, Wang J, Zhang C (2014) Using local saliency for object tracking with particle filters. In: 2014 IEEE International Conference on signal processing, communications and computing (ICSPCC), pp 388–393.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mai Thanh Nhat Truong
    • 1
  • Myeongsuk Pak
    • 1
  • Sanghoon Kim
    • 1
    Email author
  1. 1.Department of Electrical, Electronic, and Control EngineeringHankyong National UniversityGyeonggi-doRepublic of Korea

Personalised recommendations