Advertisement

Multimedia Tools and Applications

, Volume 78, Issue 5, pp 6139–6162 | Cite as

Histogram based multilevel reversible data hiding scheme using simple and absolute difference images

  • Sonal KukrejaEmail author
  • Singara Singh Kasana
  • Geeta Kasana
Article
  • 110 Downloads

Abstract

In this paper, a multilevel reversible data hiding scheme based on simple and absolute differences of non overlapping blocks of a cover image is proposed. Histogram of each difference block of the cover image is generated and the positive and negative peak points of this histogram are used to hide the secret data bits by shifting these peak points. Number of secret bits hidden into each positive peak point is exactly one while number of secret bits hidden into each negative peak point are more than one which increases the hiding capacity of the cover image. Proposed scheme achieves high hiding capacity than existing reversible data hiding schemes while keeping less distortion in the marked image.

Keywords

Reversible data hiding MSE PSNR PSNR HVS Histogram shifting 

Notes

References

  1. 1.
    Alattar M (2004) Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans Image Process 13(8):1147–1156MathSciNetGoogle Scholar
  2. 2.
    An L, Gao X, Yuan Y, Tao D (2012) Robust lossless data hiding using clustering and statistical quantity histogram. Neuro Comput 77(1):1–11Google Scholar
  3. 3.
    Castiglione A, Pizzolante R, Palmieri F, Masucci B, Carpentieri B, Santis AD, Castiglione A (2017) On-board format-independent security of functional magnetic resonance images. ACM Trans Embed Comput Syst 16(2):Article 56.  https://doi.org/10.1145/2893474 Google Scholar
  4. 4.
    Chang YF, Tai WL (2012) Histogram based reversible data hiding based on pixel differences with prediction and sorting. KSII Trans Internet Inf Syst 6(2):3100–3116Google Scholar
  5. 5.
    Dragoi I-C, Coltuc D (2015) On local prediction nased reversible watermarking. IEEE Trans Image Process 24(4):1244–1246MathSciNetzbMATHGoogle Scholar
  6. 6.
    Fallahpour M, Sedaaghi MH (2007) High capacity lossless data hiding based on histogram modification. IEICE Electron Express 4(7):205–210Google Scholar
  7. 7.
    Goljan M, Fridrich J, Du R (2001) Distortion-free data embedding. In: Proceedings of the four information hiding workshop, lecture notes in computer science, vol 2137. Springer, New York, pp 27–41zbMATHGoogle Scholar
  8. 8.
    Hong W (2012) Adaptive reversible data hiding method based on error energy control and histogram shifting. Opt Commun 285(2):101–108Google Scholar
  9. 9.
    Hong W, Chen TS, Wu MC (2013) An improved human visual system based reversible data hiding method using histogram modification. Opt Commun 291:87–97Google Scholar
  10. 10.
    Honsinger C, Jone P, Rabbani M, Stoffel J (2001) Lossless recovery of an original image containing embedded data. United States Patent No 6278791Google Scholar
  11. 11.
    Jung SW (2014) Adaptive post-filtering of JPEG compressed images considering compressed domain lossless data hiding. Inf Sci 281:355–364MathSciNetGoogle Scholar
  12. 12.
    Kamstra L, Heijmans H (2005) Reversible data embedding into images using wavelet schemes and sorting. IEEE Trans Image Process 14(12):2082–2090MathSciNetGoogle Scholar
  13. 13.
    Kasana G, Singh K, Bhatia SS (2016) Block-based high capacity multilevel image steganography. J Circuits Syst Comput 24(8)Google Scholar
  14. 14.
    Kim HJ, Sachnev V, Shi YQ, Nam J, Choo HG (2008) A novel difference expansion transform for reversible data embedding. IEEE Trans Inf Forensic Secur 3(3):456–465Google Scholar
  15. 15.
    Lee CC, Wu HC, Tsai CS, Chu YP (2008) Adaptive lossless steganographic scheme with centralized difference expansion. Pattern Recogn 41(6):2097–2106zbMATHGoogle Scholar
  16. 16.
    Leung HY, Cheng LM, Liu F, Fu QK (2013) Adaptive reversible data hiding based on block median preservation and modification of prediction errors. J Syst Softw 86(8):2204–2219Google Scholar
  17. 17.
    Li X, Yang B, Zeng T (2011) Efficient reversible watermarking based on adaptive prediction-error expansion and pixel selection. IEEE Trans Image Process 20 (12):3524–3533MathSciNetzbMATHGoogle Scholar
  18. 18.
    Lin CC, Tai WL, Chang CC (2008) Multilevel reversible data hiding based on histogram modification of difference images. Pattern Recogn 41:3582–3591zbMATHGoogle Scholar
  19. 19.
    Lo CC, Hu Y, Chen WL, Wu CM (2014) Reversible data hiding scheme for BTC-compressed images based on histogram shifting. Int J Secur Appl 8(2):301–314Google Scholar
  20. 20.
    Lou DC, Chou CL, Tso HK, Chiu CC (2012) Active steganalysis for histogram-shifting based reversible data hiding. Opt Commun 285(10-11):2510–2518Google Scholar
  21. 21.
    Lu T-C, Tseng C-Y, Deng K-M (2014) Reversible data hiding using local edge sensing prediction methods and adaptive thresholds. Signal Process 104:152–166Google Scholar
  22. 22.
    Luo L, Chen Z, Chen M, Zeng X, Xiong Z (2010) Reversible image watermarking using interpolation technique. IEEE Trans Inf Forensic Secur 5(1):187–193Google Scholar
  23. 23.
    Luo H, Yu FX, Chen H, Huang ZL, Li H, Wang PH (2011) Reversible data hiding based on block median preservation. Inform Sci 181(2):308–328Google Scholar
  24. 24.
    Ma X, Pan Z, Hu S, Wang L (2015) High fidelity reversible data hiding scheme based on multi-prediction sorting and selecting mechanism. J Vis Commun Image Represent 28:71–82Google Scholar
  25. 25.
    Mali SN, Patil PM, Jalenkar RM (2012) Robust and secured image-adaptive data hiding. Digit Signal Process 22:314–323MathSciNetGoogle Scholar
  26. 26.
    Ni Z, Shi YQ, Ansari N, Su W (2006) Reversible data hiding. IEEE Trans Circ Syst Video Technol 16(3):354–362Google Scholar
  27. 27.
    Ou B, Li X, Wang J (2016) Improved PVO-based reversible data hiding: a new implementation based on multiple histograms modification. J Vis Commun Image R 38:328–339Google Scholar
  28. 28.
    Pizzolante R, Carpentieri B, Castilglione A, Gincarlo D (2011) The AVQ algorithm: watermarking and compression performances. In: Third international conference on intelligent networking and collaborative systemsGoogle Scholar
  29. 29.
    Qu X, Kim HJ (2015) Pixel based pixel value ordering predictor for high-fidelity reversible data hiding. Signal Process 111:249–260Google Scholar
  30. 30.
    Sachnev V, Kim HJ, Nam J, Suresh S, Shi YQ (2009) Reversible watermarking algorithm using sorting and prediction. IEEE Trans Circ Syst Video Technol 19(7):989–999Google Scholar
  31. 31.
    Sencar HT, Ramkumar M, Akansu AN (2004) Data hiding fundamentals and applications: content security in digital multimedia. Elsevier Academic Press, New YorkzbMATHGoogle Scholar
  32. 32.
    Tai WL, Yeh CM, Chang CC (2009) Reversible data hiding based on histogram modification of pixel differences. IEEE Trans Circ Syst Video technol 19(6):906–910Google Scholar
  33. 33.
    Tang J, Zheng J, Guo L (2011) H.264/AVC compressed domain data hiding algorithm based on in-loop compensation. In: 4th international congress on image and signal processing, pp 371–375Google Scholar
  34. 34.
    Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circ Syst Video Technol 13(8):890–896Google Scholar
  35. 35.
    Tsai P, Hu Y, Yeh HL (2009) Reversible image hiding scheme using predictive coding and histogram shifting. Signal Process 89(6):1129–1143zbMATHGoogle Scholar
  36. 36.
    Tseng HW, Chang CC (2008) An extended difference expansion algorithm for reversible watermarking. Image Vis Comput 26(8):1148–1153Google Scholar
  37. 37.
    Wang ZH, Lee CF, Chang CY (2013) Histogram shifting imitated reversible data hiding. J Syst Softw 86(2):315–323Google Scholar
  38. 38.
    Wang J, Ni J, Hu Y (2014) An efficient reversible data hiding scheme using prediction and optimal side information selection. J Vis Commun Image Represent 25(6):1425–1431Google Scholar
  39. 39.
    Wu H-T, Dugelay J-L, Shi Y-Q (2015) Reversible image data hiding with contrast enhancement, vol 22Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sonal Kukreja
    • 1
    Email author
  • Singara Singh Kasana
    • 1
  • Geeta Kasana
    • 1
  1. 1.Computer Science and Engineering DepartmentThapar Institute of Engineering and TechnologyPatialaIndia

Personalised recommendations