Advertisement

Multimedia Tools and Applications

, Volume 78, Issue 2, pp 1419–1439 | Cite as

Random-filtering based sparse representation parallel face recognition

  • Deyan Tang
  • Siwang ZhouEmail author
  • Wenjuan Yang
Article
  • 67 Downloads

Abstract

Collaborative representation classification (CRC) has attracted increasing attention in face recognition (FR) tasks. The two-phase sparse representation (TPSR) methods are the improved schemes. However, most existing TPSR methods decrease training samples in the first step, resulting in less similarities or discrimination for representation, even unstable classification. In this paper, we propose a novel two-phase representation based FR approach, called random-filtering based sparse representation (RFSR) scheme. In the first phase, to increase the similarity in the same class and the discrimination between different classes, RFSR uses original training samples and their corresponding random-filtering virtual samples to construct a new training set. In the second phase, it exploits the new training set to perform CRC. Furthermore, the time cost of RFSR becomes much more expensive, with the increasement of the scale of training set. To further save the computational time, the parallel measure of RFSR is proposed. The experiment results indicate that our RFSR method can improve the FR accuracy just using a simple way to obtain more training samples, along with a higher time efficiency.

Keywords

Face recognition Sparse representation classifier Parallel Virtual samples Random-filtering 

Notes

References

  1. 1.
    Ding C, Xu C, Tao D (2015) Multi-task pose-invariant face recognition. IEEE Trans Image Process Publ IEEE Signal Process Soc 24(3):980–93MathSciNetCrossRefGoogle Scholar
  2. 2.
    Feng Q, Yuan C, Huang J et al (2015) Center-based weighted kernel linear regression for image classification. In: Proceedings of IEEE International Conference on Image Processing, vol 2015, pp 3630–3634Google Scholar
  3. 3.
    Feng Q, Yuan C, Pan JS et al (2017) Superimposed sparse parameter classifiers for face recognition. IEEE Trans Cybern PP(99):1–13Google Scholar
  4. 4.
    Georghiades A, Belhumeur PN, Kriegman DJ (1997) Yale face database, center for computational vision and control at Yale University, p 2Google Scholar
  5. 5.
    Hsieh PC, Tung PC (2009) A novel hybrid approach based on sub-pattern technique and whitened PCA for face recognition. Pattern Recogn 42(5):978–984CrossRefGoogle Scholar
  6. 6.
    Huang SM, Yang JF (2012) Improved principal component regression for face recognition under illumination variations. IEEE Signal Process Lett 19(4):179–182CrossRefGoogle Scholar
  7. 7.
    Huang SM, Yang JF (2012) Kernel linear regression for low resolution face recognition under variable illumination. In: Proceedings of IEEE International Conference on Acoustics,speech and signal processing, vol 2012, pp 1945–1948Google Scholar
  8. 8.
    Ji HK, Sun QS, Ji ZX et al (2016) Collaborative probabilistic labels for face recognition from single sample per person. Pattern Recogn 62(C):125–134Google Scholar
  9. 9.
    Lei Y, Guo Y, Hayat M et al (2016) A Two-Phase Weighted Collaborative Representation for 3D partial face recognition with single sample. Pattern Recogn 52 (C):218–237CrossRefGoogle Scholar
  10. 10.
    Leng L, Zhang J, Khan MK et al (2010) Dynamic weighted discrimination power analysis: a novel approach for face and palmprint recognition in DCT domain. Int J Phys Sci 5(17):2543–2554Google Scholar
  11. 11.
    Leng L, Zhang J, Xu J et al (2010) Dynamic weighted discrimination power analysis in DCT domain for face and palmprint recognition. In: Proceedings of IEEE International Conference on Information and Communication Technology Convergence (ICTC), vol 2010, pp 467–471Google Scholar
  12. 12.
    Leng L, Zhang J, Chen G et al (2011) Two-directional two-dimensional random projection and its variations for face and palmprint recognition. In: Proceedings of International Conference on Computational Science and its Applications, vol 2011, pp 458–470Google Scholar
  13. 13.
    Leng L, Zhang S, Bi X et al (2012) Two-dimensional cancelable biometric scheme. In: Proceedings of IEEE International Conference on Wavelet Analysis and Pattern Recognition, vol 2012, pp 164–169Google Scholar
  14. 14.
    Liu BD, Gui L, Wang Y et al (2017) Class specific centralized dictionary learning for face recognition. Multimed Tools Appl 76(3):4159–4177CrossRefGoogle Scholar
  15. 15.
    Low CY, Teoh BJ, Ng CJ (2016) Multi-Fold gabor, PCA and ICA filter convolution descriptor for face recognition. IEEE Trans Circ Syst Video Technol PP (99):1–1Google Scholar
  16. 16.
    Lu J, Plataniotis KN, Venetsanopoulos AN (2003) Face recognition using LDA-based algorithms. IEEE Trans Neural Netw 14(1):195CrossRefGoogle Scholar
  17. 17.
    Martinez AM (1998) The AR face database. CVC technical report, pp 24Google Scholar
  18. 18.
    Mika S, Rätsch G, Weston J et al (1999) Fisher discriminant analysis with kernels. In: proceedings of the 1999 IEEE Signal Processing Society Workshop, Neural Netw Signal Process Ix, vol 1999, pp 41–48Google Scholar
  19. 19.
    Naseem I, Togneri R, Bennamoun M (2010) Linear regression for face recognition. IEEE Trans Pattern Anal Mach Intell 32(11):2106–2112CrossRefGoogle Scholar
  20. 20.
    Naseem I, Togneri R, Bennamoun M (2012) Robust regression for face recognition. In: Proceedings of the International Conference on Pattern Recognition, vol 2012, pp 1156–1159Google Scholar
  21. 21.
    Schölkopf B, Smola A, Müller KR (1997) Kernel principal component analysis. Lect Notes Comput Sci 1327(4):583–588CrossRefGoogle Scholar
  22. 22.
    Shen F, Yang W, Li H et al (2016) Robust regression based face recognition with fast outlier removal. Multimed Tools Appl 75(20):1–12CrossRefGoogle Scholar
  23. 23.
    Tang DY, Zhu NB, Yu F et al (2014) A novel sparse representation method based on virtual samples for face recognition. Neural Comput Appl 24(3-4):513–519CrossRefGoogle Scholar
  24. 24.
    Wagner A, Wright J, Ganesh A et al (2009) Towards a practical face recognition system: Robust registration and illumination by sparse representation. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol 2009, pp 597–604Google Scholar
  25. 25.
    Wagner A, Wright J, Ganesh A et al (2012) Toward a practical face recognition system: robust alignment and illumination by sparse representation. IEEE Trans Pattern Anal Mach Intell 34(2):372CrossRefGoogle Scholar
  26. 26.
    Wolf L, Hassner T, Taigman Y (2009) Similarity scores based on background samples. In: Proceedings of Asian Conference on Computer Vision, vol 2009, pp 88–97Google Scholar
  27. 27.
    Wright J, Yang AY, Ganesh A et al (2008) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227CrossRefGoogle Scholar
  28. 28.
    Xu Y, Zhang D, Yang J et al (2011) A Two-Phase test sample sparse representation method for use with face recognition. IEEE Trans Circ Syst Video Technol 21(9):1255–1262MathSciNetCrossRefGoogle Scholar
  29. 29.
    Xu Y, Zhu Q (2013) A simple and fast representation-based face recognition method. Neural Comput Appl 22(7-8):1543–1549CrossRefGoogle Scholar
  30. 30.
    Xu Y, Li X, Yang J et al (2014) Integrating conventional and inverse representation for face recognition. IEEE Trans Cybern 44(10):1738–1746CrossRefGoogle Scholar
  31. 31.
    Xu Y, Zhong Z, Yang J et al (2016) A new discriminative sparse representation method for robust face recognition via l 2 regularization. IEEE Trans Neural Netw Learn Syst PP(99):1–10CrossRefGoogle Scholar
  32. 32.
    Yang M, Zhang L, Yang J et al (2013) Regularized robust coding for face recognition. IEEE Trans Image Process 22(5):1753MathSciNetCrossRefGoogle Scholar
  33. 33.
    Yang J, Zhang D, Frangi AF et al (2004) Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans Pattern Anal Mach Intell 26(1):131CrossRefGoogle Scholar
  34. 34.
    Ying T, Yang J, Zhang Y et al (2016) Face recognition with pose variations and misalignment via orthogonal procrustes regression. IEEE Trans Image Process Publ IEEE Signal Process Soc 25(6):2673MathSciNetGoogle Scholar
  35. 35.
    Zhang L, Yang M, Feng X et al (2012) Collaborative representation based classification for face recognition. computer scienceGoogle Scholar
  36. 36.
    Zhang G, Sun H, Ji Z et al (2016) Cost-sensitive dictionary learning for face recognition. Pattern Recogn 60(C):613–629CrossRefGoogle Scholar
  37. 37.
    Zhou WD, Zhou WD, Li FZ (2015) Kernel sparse representation-based classifier ensemble for face recognition. Multimed Tools Appl 74(1):123–137CrossRefGoogle Scholar
  38. 38.
    Zhu NB, Li ST (2014) A Kernel-based sparse representation method for face recognition. Neural Comput Appl 24(3-4):845–852CrossRefGoogle Scholar
  39. 39.
    Zuo W, Zhang D, Yang J et al (2006) BDPCA plus LDA: a novel fast feature extraction technique for face recognition. IEEE Trans Syst Man Cybern Part B 36(4):946–53CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Computer Science and Electrical EngineeringHunan UniversityChangshaChina

Personalised recommendations