Advertisement

Multimedia Tools and Applications

, Volume 78, Issue 2, pp 1315–1344 | Cite as

Deterministic extended visual cryptographic schemes for general access structures with OR-AND and XOR-AND operations

  • Praveen KanakkathEmail author
  • Sethumadhavan Madathil
  • Ramakrishnan Krishnan
Article
  • 121 Downloads

Abstract

In Visual Cryptographic Scheme (VCS) shares of the secret image look like random, whereas in Extended Visual Cryptographic Scheme (EVCS) the shares look like meaningful images. In the case of ideal contrast deterministic constructions for VCS, depending upon the access structure, each participant needs to hold one/multiple image shares with same size of the binary secret image and the secret image will be reconstructed without any change in resolution. In this paper, two deterministic constructions for EVCS with a relative contrast of 0.333 are proposed by utilizing the ideal contrast deterministic constructions for VCS as a building block. The proposed schemes are applicable to share secret binary images only. Theoretical analysis and comparison with other related works are given in this paper.

Keywords

Visual cryptography Extended visual cryptography OR-AND reconstruction XOR-AND reconstruction General access structure 

References

  1. 1.
    Abadi M, Burrows M, Kaufman C, Lampson B (1993) Authentication and delegation with smart-cards. Sci Comput Program 21(2):93–113CrossRefGoogle Scholar
  2. 2.
    Abdullah MA, Dlay SS, Woo WL, Chambers JA (2016) A framework for iris biometrics protection: a marriage between watermarking and visual cryptography. IEEE Access 4:10180–10193CrossRefGoogle Scholar
  3. 3.
    Adhikari A (2013) Linear algebraic techniques to construct monochrome visual cryptographic schemes for general access structure and its applications to color images. Des Codes Cryptography 73(3):865– 895MathSciNetCrossRefGoogle Scholar
  4. 4.
    Arumugam S, Lakshmanan R, Nagar AK (2014) On (k,n) ∗-visual cryptographic scheme. Des Codes Cryptography 71(1):153–162MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ateniese G, Blundo C, De Santis A, Stinson DR (2001) Extended capabilities for visual cryptography. Theoretical Comput Sci 250(1):143–161MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ateniese G, Blundo C, Santis AD, Stinson DR (1996) Visual cryptography for general access structures. Inform Comput 129(2):86–106MathSciNetCrossRefGoogle Scholar
  7. 7.
    Blundo C, Bonis AD, Santis AD (2001) Improved schemes for visual cryptography. Des Codes Cryptography 24(3):255–278MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chen TH, Lee YS (2009) Yet another friendly progressive visual secret sharing scheme. In: Proceedings of the IIHMSP 2009, pp 353–356Google Scholar
  9. 9.
    Chiu PL, Lee KH (2015) User-friendly threshold visual cryptography with complementary cover images. Signal Process 108:476–488CrossRefGoogle Scholar
  10. 10.
    Cimato S, Santis AD, Ferrara AL, Masucci B (2005) Ideal contrast visual cryptography schemes with Reversing. Inform Process Lett 93(4):199–206MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cimato S, Yang JC, Wu CC (2014) Visual cryptography based watermarking. Trans Data Hiding Multimed Secur 9:91–109CrossRefGoogle Scholar
  12. 12.
    Dang W, He M, Wang D, Li X (2015) K out of k extended visual cryptography scheme based on XOR. Int J Comput Commun Eng 4(6)Google Scholar
  13. 13.
    De Bonis A, De Santis A (2004) Randomness in secret sharing and visual cryptography schemes. Theor Comput Sci 314(3):351–74MathSciNetCrossRefGoogle Scholar
  14. 14.
    Dutta S, Rohit RS, Adhikari A (2015) Constructions and analysis of some efficient t − (k,n)- visual cryptographic schemes using linear algebraic techniques. Des Codes Cryptography:1–32Google Scholar
  15. 15.
    EL-Latif AAA, Yan X, LI L, Wang N, Peng JL, Niu X (2013) A new meaningful secret sharing scheme based on random grids, error diffusion and chaotic encryption. Opt Laser Technol 54:389–400CrossRefGoogle Scholar
  16. 16.
    Fang WP (2008) Friendly progressive visual secret sharing. Pattern Recogn 41:1410–1414CrossRefGoogle Scholar
  17. 17.
    Guo T, Liu F, Wu C, Ren Y, Wang W (2013) On the randomness of visual cryptography scheme. In: Ninth international IEEE conference on Intelligent Information Hiding and Multimedia Signal Processing, pp 391–394Google Scholar
  18. 18.
    Guo T, Liu F, Wu CK (2014) k out of k extended visual cryptographic scheme by random grids. Signal Process 94:90–101CrossRefGoogle Scholar
  19. 19.
    Guo T, Liu F, Wu CK, Wang W (2014) On (k, n) visual cryptography scheme with t essential parties. LNCS 8317:56–68zbMATHGoogle Scholar
  20. 20.
    Kang I, Arce GR, Lee HK (2011) Color extended visual cryptography using error diffusion. IEEE Trans image Process 20(1):132–145MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kaur H, Khanna P (2016) Biometric template protection using cancelable biometrics and visual cryptographic techniques. Multimed Tool Appl 75(23):16333–16361CrossRefGoogle Scholar
  22. 22.
    Lee KH, Chiu PL (2012) An extended visual cryptography algorithm for general access structures. IEEE Trans Inform Forensics Secur 7(1):219–229CrossRefGoogle Scholar
  23. 23.
    Liao X, Guo S, Yin J, Wang H, Li X, Sangaiah AK (2017) New cubic reference table based image steganography. Multimed Tool ApplGoogle Scholar
  24. 24.
    Liao X, Qin Z, Ding L (2017) Data embedding in digital images using critical functions. Signal Process: Image Commun 58:146–156CrossRefGoogle Scholar
  25. 25.
    Liao X, Yin J, Guo S, Li X, Sangaiah AK (2017) Medical JPEG image steganography based on preserving inter-block dependencies. Comput Electric EngGoogle Scholar
  26. 26.
    Liu F, Guo T, Wu C, Yang CN (2014) Flexible visual cryptography scheme and its application. in transactions on data hiding and multimedia security IX 2014. Springer, Berlin, pp 110–130Google Scholar
  27. 27.
    Liu F, Wu C (2011) Embedded extended visual cryptography schemes. IEEE Trans Inform Forensics Secur 6(2):307–322CrossRefGoogle Scholar
  28. 28.
    Liu F, Wu C, Lin X (2010) Step construction of visual cryptographic schemes. IEEE Trans Inform Forensics Secur 5(1):25–34Google Scholar
  29. 29.
    Liu F, Wu C, Qian L (2012) Improving the visual quality of size invariant visual cryptography scheme. J Visual Commun Image Represent 23(2):331–342CrossRefGoogle Scholar
  30. 30.
    Lu J, Yang Z, Li L, Yuan W, Li L, Chang CC (2017) Multiple schemes for mobile payment authentication using QR Code and visual cryptography. Mobile Inform SystGoogle Scholar
  31. 31.
    Lu S, Manchala D, Ostrovsky R (2011) Visual cryptography on graphs. J Combin Optim 21(1):47–66CrossRefGoogle Scholar
  32. 32.
    Nakajima M, Yamaguchi Y (2002) Extended visual cryptography for natural images. In: Proceedings of WSGC, p 2002Google Scholar
  33. 33.
    Naor M, Pinkas B (1997) Visual authentication and identification. In: Annual International Cryptology Conference. Springer, Berlin, pp 322–336Google Scholar
  34. 34.
    Naor M, Shamir A (1994) Visual cryptography. Proc Eurocrypt 1994:1–12zbMATHGoogle Scholar
  35. 35.
    Ou D, Sun W (2016) Meaningful (2, infinity) secret image sharing scheme based on flipping operations. Multimed Tool Appl 75(6):3517–3536CrossRefGoogle Scholar
  36. 36.
    Ou D, Sun W, Wu X (2015) Non-expansible XOR-based visual cryptography scheme with meaningful shares. Signal Process 108:604–621CrossRefGoogle Scholar
  37. 37.
    Praveen K, Sethumadhavan M (2015) Ideal contrast visual cryptography for general access structures with AND operation. Proc Third ICACNI 2015:309–314Google Scholar
  38. 38.
    Ross A, Otham A (2011) Visual cryptography for biometric privacy. IEEE Trans inform Forensics secur 6(1):70–81CrossRefGoogle Scholar
  39. 39.
    Shivani S (2017) Multi secret sharing with unexpanded meaningful shares. Multimed Tool Appl:1–24Google Scholar
  40. 40.
    Shivani S, Agarwal S (2017) Novel basis matrix creation and processing algorithms for friendly progressive visual secret sharing with space-efficient shares. Multimed Tool Appl 76(6):8711–8744CrossRefGoogle Scholar
  41. 41.
    Shyu SJ (2014) Threshold visual cryptographic scheme with meaningful shares. IEEE Signal Process Lett 21(2):1521–1525CrossRefGoogle Scholar
  42. 42.
    Shyu SJ, Chen MC (2015) Minimizing pixel expansion in visual cryptographic scheme for general access structures. IEEE Trans Circuits Syst for Video Technol 25 (9):1557–1561CrossRefGoogle Scholar
  43. 43.
    Tai GC, Chang LW (2004) Visual cryptography for digital watermarking in still images. Pacific-rim conference on multimedia. Springer, BerlinGoogle Scholar
  44. 44.
    Ulutas M (2010) Meaningful share generation for increased number of secrets in visual secret-sharing scheme. Math Probl Eng:2010Google Scholar
  45. 45.
    Wang DS, Song T, Dong L, Yang CN (2013) Optimal contrast grayscale visual cryptography schemes with reversing. IEEE Trans Inform Forensics Secur 8 (12):2059–2072CrossRefGoogle Scholar
  46. 46.
    Wang DS, Yi F, Li XB (2009) On general constructions for extended visual cryptographic schemes. Pattern Recogn 42(11):3071–3082CrossRefGoogle Scholar
  47. 47.
    Wang S, Yan X, Sang J, Niu X (2016) Meaningful visual secret sharing based on error diffusion and random grids. Multimed Tool Appl 75(6):3353–3373CrossRefGoogle Scholar
  48. 48.
    Wang Z, Arce GR, Di Crescenzo G (2009) Halftonevisual cryptography with error diffusion. IEEE Trans Inform Forensics Secur 4(3):383–396CrossRefGoogle Scholar
  49. 49.
    Wang ZM, Arce GR (2006) Halftone visual cryptography through error diffusion. In: Proceedings of the IEEE International conference on Image Processing, pp 109–112Google Scholar
  50. 50.
    Wang ZM, Arce GR, Di Crescenzo G (2006) Halftone visual cryptography via direct binary search. In: Proceedings of the EUSIPCO, p 2006Google Scholar
  51. 51.
    Xiong L, Jian M, Wendong W, Yongping X, Junsong Z (2013) A novel smart card and dynamic ID based remote user authentication scheme for multi-server environments. Math Comput Model 58(1-2):85–95CrossRefGoogle Scholar
  52. 52.
    Xiong L, Jianwei N, Junguo L, Wei L (2015) Cryptanalysis of a dynamic identity-based remote user authentication scheme with verifiable password update. 28(2):374–382Google Scholar
  53. 53.
    Yamaguchi Y (2014) Extended visual cryptography scheme for multiple-secrets continuous-tone images. Proc Trans Data Hiding Multimed Secur IX:25–41CrossRefGoogle Scholar
  54. 54.
    Yan B, Wang YF, Song LY, Yang HM (2016) Size-invariant extended visual cryptography with embedded watermark based on error diffusion. Multimed Tool Appl 75(18):11157–11180CrossRefGoogle Scholar
  55. 55.
    Yan X, Wang S, Niu X, Yang CN (2015) Generalized random grids-based threshold visual cryptography with meaningful shares. Signal Process 109:317–333CrossRefGoogle Scholar
  56. 56.
    Yan X, Wang S, Niu X, Yang CN (2015) Halftone visual cryptography with minimum auxiliary black pixels and uniform image quality. Digital Signal Process 38:53–65CrossRefGoogle Scholar
  57. 57.
    Yang CN (2004) New visual secret sharing schemes using probabilistic method. Pattern Recogn Lett 25:481–494CrossRefGoogle Scholar
  58. 58.
    Yang CN, Chen TS (2005) Extended visual secret sharing schemes with high-quality shadow images using gray sub pixels. Proceedings of the ICIAR 2005:1184–1191Google Scholar
  59. 59.
    Yang CN, Chen TS (2007) Extended visual secret sharing schemes. Improving the shadow image quality. Int J Pattern Recogn Artif Intell 21(5):879–898CrossRefGoogle Scholar
  60. 60.
    Yang CN, Liao JK, Wu FH, Yamaguchi Y (2016) Developing visual cryptography for authentication on smart phones. International conference on industrial IoT technologies and applications. Springer, BerlinGoogle Scholar
  61. 61.
    Yang CN, Sun LZ, Yan X, Kim C (2016) Design a new visual cryptography for human-verifiable authentication in accessing a database. J Real-Time Image Process 12(2):483–494CrossRefGoogle Scholar
  62. 62.
    Yang CN, Yang YY (2014) New extended visual cryptography schemes with clearer shadow images. Inform Sci 271:246–263MathSciNetCrossRefGoogle Scholar
  63. 63.
    Zhou Z, Arce GR, Di Crescenzo G (2006) Halftone visual cryptography. IEEE Trans Image Process 15(8):2441–2453CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Praveen Kanakkath
    • 1
    Email author
  • Sethumadhavan Madathil
    • 1
  • Ramakrishnan Krishnan
    • 1
  1. 1.TIFAC-CORE in Cyber Security, Amrita School of EngineeringAmrita Vishwa VidyapeethamCoimbatoreIndia

Personalised recommendations