Advertisement

Multimedia Tools and Applications

, Volume 77, Issue 24, pp 31545–31579 | Cite as

Coral reef image/video classification employing novel octa-angled pattern for triangular sub region and pulse coupled convolutional neural network (PCCNN)

  • Ani Brown Mary N
  • Dejey Dharma
Article

Abstract

Coral reef image classification with the help of its texture features is a challenging task, due to its variation in class samples. This is achieved with the proposed feature descriptor termed as Octa-angled Pattern for Triangular sub region (OPT) which selects the neighbor in a triangular pattern in clockwise and counter-clockwise directions. The proposed method reduces the size of feature vector by reducing the bin size of histogram besides improving accuracy. For classification, a novel classifier, named Pulse Coupled Convolutional Neural Network (PCCNN) is employed. The performance of OPT is estimated using F-score. Experiments carried out with a variety of coral images and video data sets, diseased coral data sets and texture data sets to show that OPT technique gets on better than existing feature descriptors. Experimental result shows that the time complexity is reduced and accuracy is improved from 2 to 5% for all coral data sets used.

Keywords

Classification Feature descriptor CNN Feature extraction 

Notes

Acknowledgements

The authors would like to express thanks to J.K.Patterson Edward for affording Suganthi Devadason Marine Research Institute (SDMRI) data set. And also to Oscar Beijbom for affording MLC 2012 data set publicly available on the web, ASM Shihavuddin for affording data sets such as EILAT, KTH-Tips, EILAT2, LAVA, RSMAS and UIUCTEX data sets.

References

  1. 1.
    Al-Najjar YAY, Soong DC (2012) Comparison of image quality assessment: PSNR, HVS, SSIM, UIQI. Int J Sci Eng Res 3(8):1–5Google Scholar
  2. 2.
    Ani Brown Mary N, Dejey D (2017) Classification of coral reef submarine images and videos using a novel Z with tilted Z local binary pattern (Z⊕TZLBP). Wirel Pers Commun.  https://doi.org/10.1007/s11277-017-4981-x CrossRefGoogle Scholar
  3. 3.
    Ani Brown Mary N, Dharma D (2017) Coral reef image classification employing Improved LDP for feature extraction. Elsevier J Vis Commun Image Represent 49:225–242CrossRefGoogle Scholar
  4. 4.
    Bala A, Kaur T (2016) Local texton XOR patterns: a new feature descriptor for content based image retrieval. Elsevier Eng Sci Technol, Int J 19:101–112Google Scholar
  5. 5.
    Beijbom O, Edmund PJ, Kline DI, Mitchell BG, Kriegman D (2012) Automated annotation of coral reef survey images. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, Rhode Island, 16–21Google Scholar
  6. 6.
    Bell S, Upchurch P, Snavely N, Bala K (2013) Opensurfaces: a richly annotated catalog of surface appearance. In: Proceedings of SIGGRAPHGoogle Scholar
  7. 7.
    Berbar MA (2013) Three robust features extraction approaches for facial gender classification. Springer Vis Comput.  https://doi.org/10.1007/s00371-013-0774-8 CrossRefGoogle Scholar
  8. 8.
    Blanchet J-N, Déry S, Landry J-A, Osborne K (2016) Automated annotation of corals in natural scene images using multiple texture representations. Peer J Preprints 4:e2026v2Google Scholar
  9. 9.
    Brown Climate change & coral reef disease. Defenders of wildlifeGoogle Scholar
  10. 10.
    Caputo B, Hayman E, Fritz M, Eklundh J-O (2010) Classifying materials in the real world. Elsevier Image Vis Comput 28:150–163CrossRefGoogle Scholar
  11. 11.
    Chen J, Shan S, He C, Zhao G, Pietiakinen M, Chen X, Member S, Gao W (2010) WLD: a robust local image descriptor", IEEE Trans Pattern Anal Mach Intell 32(9)Google Scholar
  12. 12.
    Cui J, Liu Y, Xu Y, Zhao H, Zha H (2013) Tracking generic human motion via fusion of low- and high-dimensional approaches. IEEE Trans Syst, Man Cybernet: Syst 43(4)CrossRefGoogle Scholar
  13. 13.
    Dale Stokes M, Deane GB (2009) Automated processing of coral reef benthic images. Limnol Oceanogr Methods 7:157–168CrossRefGoogle Scholar
  14. 14.
    Dana KJ, Van Ginneken B, Nayar SK, Koenderink Nayar JJ (1999) Reflectance and texture of real-world surfaces. ACM Trans Graph (TOG) 18(1):1–34CrossRefGoogle Scholar
  15. 15.
    Dong Y, Feng J, Yang C, Wang X, Zheng L, Jiexin P (2017) Multi-scale counting and difference representation for texture classification. Springer Vis Comput.  https://doi.org/10.1007/s00371-017-1415-4 CrossRefGoogle Scholar
  16. 16.
    Draisbach U, Naumann F (2013) On choosing thresholds for duplicate detection. 18th International Conference on Information Quality (ICIQ), Little Rock, USAGoogle Scholar
  17. 17.
    Gunatilaka AH, Baertlein BA (2007) Feature-level and decision-level fusion of non coincidently sampled sensors for land mine detection. IEEE Trans Pattern Anal Mach Intell 23(6)CrossRefGoogle Scholar
  18. 18.
    Guo Z, Zhang L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 19(6)Google Scholar
  19. 19.
    Hayman E, Caputo B, Fritz M, Eklundh J-O (2004) On the significance of real-world conditions for material classification. Springer, Computer visionGoogle Scholar
  20. 20.
    Heikkil M, Pietikainena M, Schmid C (2009) Description of interest regions with local binary patterns. Elsevier Pattern Recogn 42:425–436CrossRefGoogle Scholar
  21. 21.
    Huang D, Shan C, Ardebilian M, Wang Y, Chen L (2011) Local binary patterns and its application to facial image analysis: a survey. IEEE Trans Syst Man Cybern Part C Appl Rev 41(6)CrossRefGoogle Scholar
  22. 22.
    Lazebnik S, Schmid C, Ponce J (2005) A sparse texture representation using local affine regions. IEEE Trans Pattern Anal Mach Intell 27:1265–1278CrossRefGoogle Scholar
  23. 23.
    Lei Z, Pietikainen M, Li SZ (2014) Learning discriminant face descriptor. IEEE Trans Pattern Anal Mach Intell 36(2):289–302CrossRefGoogle Scholar
  24. 24.
    Li C, Zhou W, Yuan S (2014) Iris recognition based on a novel variation of local binary pattern. Springer Vis Comput.  https://doi.org/10.1007/s00371-014-1023-5 CrossRefGoogle Scholar
  25. 25.
    Li Y, Zhang Y, Huang X, Zhu H, Ma J (2018) Large-scale remote sensing image retrieval by deep hashing neural networks. IEEE Trans Geosci Remote Sens 56(2)CrossRefGoogle Scholar
  26. 26.
    Liao S, Law MWK, Chung ACS (2009) Dominant local binary patterns for texture classification. IEEE Trans Image Process 18(5):1107–1118MathSciNetCrossRefGoogle Scholar
  27. 27.
    Liong VE, Lu J, Wang G, Moulin P, Zhou J (2015) Deep hashing for compact binary codes learning. CVPRGoogle Scholar
  28. 28.
    Liu Y, Cui J, Zhao H, Zha H (2012) Fusion of low-and high-dimensional approaches by trackers sampling for generic human motion tracking. 21st International Conference on Pattern Recognition (ICPR 2012)Google Scholar
  29. 29.
    Liu L, Cheng L, Liu Y, Jia Y, Rosenblum DS (2016) Recognizing complex activities by a probabilistic interval-based model. Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16), pp 1266–1272Google Scholar
  30. 30.
    Liu Y, Zheng Y, Liang Y, Liu S, Rosenblum DS (2016) Urban water quality prediction based on multi-task multi-view learning. Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16), pp 2576–2582Google Scholar
  31. 31.
    Liu Y, Zhang L, Nie L, Yan Y, Rosenblum DS (2016) Fortune teller: predicting your career path. Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)Google Scholar
  32. 32.
    Liu Y, Nie L, Liu L, Rosenblum DS (2016) From action to activity: Sensor-based activity recognition. ElsevierNeurocomputing 181:108–115CrossRefGoogle Scholar
  33. 33.
    Liu Y, Liang Y, Liu S, Rosenblum DS, Zheng Y (2016) Predicting urban water quality with ubiquitous data. Comput SocGoogle Scholar
  34. 34.
    Liuy Y, Niey L, Hanx L, Zhangy L, Rosenblum DS (2015) action2activity: recognizing complex activities from sensor data. IJCAIGoogle Scholar
  35. 35.
    Loya Y The coral reefs of eilat – past, present and future: three decades of coral community structure studies. Coral health and disease, pp 1–34Google Scholar
  36. 36.
    Lu Y, Wei Y, Liu L, Zhong J, Sun L, Liu Y (2016) Towards unsupervised physical activity recognition using Smartphone accelerometers", Springer. Multimed Tools ApplGoogle Scholar
  37. 37.
    Mahmood A, Bennamoun M, An S, Sohely F, Boussaid F, Hovey R, Kendrick G, Fisher RB (2016) Coral classification with hybrid feature representations. IEEE International Conference on Image ProcessingGoogle Scholar
  38. 38.
    Marcos MSA, David L, Peñaflor E, Ticzon V, Soriano M (2008) Automated benthic counting of living and non-living components in Ngedarrak Reef, Palau via subsurface underwater video. Environ Monit Assess 145:177–184CrossRefGoogle Scholar
  39. 39.
    Mehta A, Ribeiro E, Gilner J, van Woesik R (2007) Coral reef texture classification using support vector machines. International Conference on Computer Vision Theory and Applications, Barcelona, SpainGoogle Scholar
  40. 40.
    Padmavathi G, Muthukumar M Thakur SK (2010) Kernel principal component analysis feature detection and classification for underwater images. 23rd International Congress on Image and Signal Processing, CISPGoogle Scholar
  41. 41.
    Pican N, Trucco E, Ross M, Lane DM, Petillot Y, Ruiz IT (1998) Texture analysis for seabed classification: co-occurrence matrices vs self-organizing maps. IEEEGoogle Scholar
  42. 42.
    Pizarro O, Rigby P, Colquhoun J (2008) Towards image-based marine habitat classification. Oceans: 1–7Google Scholar
  43. 43.
    Qi X, Xiao R, Guo J, Zhang L (2013) Pairwise rotation invariant co-occurrence local binary pattern. IEEE Trans Pattern Anal Mach Intell 36(11)CrossRefGoogle Scholar
  44. 44.
    Satpathy A, Jiang X, Eng H-L (2014) LBP-based edge-texture features for object recognition. IEEE Trans Image Process 23(5):1953–1964MathSciNetCrossRefGoogle Scholar
  45. 45.
    Shakoor MH, Boostani R (2017) A novel advanced local binary pattern for image-based coral reef classification", SPRINGER, Multimedia Tools and ApplicationsGoogle Scholar
  46. 46.
    Shihavuddin ASM, Gracias N, Garcia R, Gleason ACR, Gintert B (2013) Image-based coral reef classification and thematic mapping. Remote Sens 5:1809–1841CrossRefGoogle Scholar
  47. 47.
    Shrivastava N, Tyagi V (2013) An effective scheme for image texture classification based on binary local structure pattern. Springer Vis Comput.  https://doi.org/10.1007/s00371-013-0887-0 CrossRefGoogle Scholar
  48. 48.
    Soong K (1993) Colony size as a species character in massive reef corals", Springer. Coral Reefs 12:77–83CrossRefGoogle Scholar
  49. 49.
    Tusa E, Reynolds A, Lane DM, Robertson NM, Villegas H, Bosnjak A (2014) Implementation of a fast coral detector using a supervised machine learning and gabor wavelet feature descriptors. Sensor Systems for a Changing Ocean (SSCO). IEEE: 1–6Google Scholar
  50. 50.
    Wang Z, Bovik AC (2002) A universal image quality index. IEEE, Sign Process Lett 9:81–84CrossRefGoogle Scholar
  51. 51.
    Xia T, Qing W, Chen C, Yizhou Y (2009) Lazy texture selection based on active learning. Springer Vis Comput.  https://doi.org/10.1007/s00371-009-0359-8 CrossRefGoogle Scholar
  52. 52.
    Xiao T, Xia T, Yang Y, Huang C, Wang X (2015) Learning from massive noisy labeled data for image classification. IEEE, CVPRGoogle Scholar
  53. 53.
    Zhang J, Marszalek M, Lazebnik S, Schmid C (June 2007) Local features and kernels for classication of texture and object categories: a comprehensive study. Int J Comput Vis 73(2):213–238CrossRefGoogle Scholar
  54. 54.
    Zhang B, Gao Y, Zhao S, Liu J (2010) Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans Image Process 19(2):533–544MathSciNetCrossRefGoogle Scholar
  55. 55.
    Zhou F, Lin Y (2015) Fine-grained image classification by exploring bipartite-graph labels. IEEE, CVPRGoogle Scholar
  56. 56.
    Zhu C, Bichot C-E, Chen L (2013) Image region description using orthogonal combination of local binary patterns enhanced with color information. Elsevier Pattern Recogn 46:1949–1963CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Science & Engineering, Regional CampusAnna UniversityTirunelveliIndia

Personalised recommendations