Advertisement

Multimedia Tools and Applications

, Volume 77, Issue 23, pp 30381–30402 | Cite as

Multi-sensor data fusion using NIHS transform and decomposition algorithms

  • V. Ankarao
  • V. Sowmya
  • K. P. Soman
Article
  • 83 Downloads

Abstract

Multi-spectral image fusion is to enhance the details present in multi-spectral bands with the spatial information available in the panchromatic image. Fused images have the effect of spectral distortions and lack of structural similarity. To overcome these limitations, three methods are proposed using intensity, hue, saturation (IHS) and nonlinear IHS (NIHS) transform along with the Dynamic Mode Decomposition (DMD) and 2D-Empirical Mode Decomposition (2D-EMD or IEMD). An intensity plane is calculated from the NIHS transform. The modes are constructed using DMD by considering the variations between the intensity plane computed using NIHS transforms of a low resolution multi-spectral image and a panchromatic image. Similarly, 2D-EMD is also used for image fusion. Modes are subjected to weighted fusion rule to get an intensity plane with spatial and edge information. Finally, the calculated intensity plane is concatenated along with the hue and saturation plane of low-resolution multi-spectral image and transformed into RGB color space. Thus, the fused images have high spatial and edge information on spectral bands. The experiments and its quality assessment assure that proposed methods perform better than the existing methods.

Keywords

Remote sensing Multi-spectral fusion Dynamic mode decomposition Image empirical mode decomposition Non-linearIHS transform 

References

  1. 1.
    Agarwal J, Bedi SS (2015) Implementation of hybrid image fusion technique for feature enhancement in medical diagnosis. Human-centric Comput Inform Sci 5(1):3CrossRefGoogle Scholar
  2. 2.
    Aiazzi B, Alparone L, Baronti S et al (2002) Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis. IEEE Trans Geosci Remote Sens 40:2300–2312CrossRefGoogle Scholar
  3. 3.
    Aiazzi B, Baronti S, Selva M (2007) Improving component substitution pansharpening through multivariate regression of ms +pan data. IEEE Trans Geosci Remote Sens 45:3230–3239CrossRefGoogle Scholar
  4. 4.
    Amolins K, Zhang Y, Dare P (2007) Wavelet based image fusion techniques an introduction, review and comparison. ISPRS J Photogramm Remote Sens 62(4):249–263CrossRefGoogle Scholar
  5. 5.
    Amro I, Mateos J, Vega M et al (2011) A survey of classical methods and new trends in pansharpening of multispectral images. EURASIP J Advan Signal Process 2011(1):79CrossRefGoogle Scholar
  6. 6.
    Ankarao V, Sowmya V, Soman KP (2017) Fusion of panchromatic image with low-resolution multi-spectral images using dynamic mode decomposition. In: Lecture notes in electrical engineering, Springer Nature. https://www.icnets2.com/dump/accepted-paper?symposium=a
  7. 7.
    Brunton BW, Johnson LA, Ojemann JG et al (2016) Extracting spatial–temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition. J Neurosci Methods 258:1–15CrossRefGoogle Scholar
  8. 8.
    Brunton SL, Proctor JL, Kutz JN (2013) Compressive sampling and dynamic mode decomposition. arXiv:1312.5186
  9. 9.
    Chen KK, Tu JH, Rowley CW (2012) Variants of dynamic mode decomposition: boundary condition, Koopman, and fourier analyses. J Nonlinear Sci 22(6):887–915MathSciNetCrossRefGoogle Scholar
  10. 10.
    Choi M (2006) A new intensity-hue-saturation fusion approach to image fusion with a tradeoff parameter. IEEE Trans Geosci Remote Sens 44:1672–1682CrossRefGoogle Scholar
  11. 11.
    Colominas MA, Humeau-Heurtier A, Schlotthauer G (2016) Orientation-independent empirical mode decomposition for images based on unconstrained optimization. IEEE Trans Image Process 25:2288–2297MathSciNetCrossRefGoogle Scholar
  12. 12.
    Colominas MA, Schlotthauer G, Torres ME (2015) An unconstrained optimization approach to empirical mode decomposition. Digital Signal Process 40:164–175MathSciNetCrossRefGoogle Scholar
  13. 13.
    Damerval C, Meignen S, Perrier V (2005) A fast algorithm for bidimensional emd. IEEE Signal Process Lett 12:701–704CrossRefGoogle Scholar
  14. 14.
    Dragomiretskiy K, Zosso D (2014) Variational mode decomposition. IEEE Trans Signal Process 62:531–544MathSciNetCrossRefGoogle Scholar
  15. 15.
    Dragomiretskiy K, Zosso D (2015) Two-dimensional variational mode decomposition. Springer International Publishing, Cham, pp 197–208zbMATHGoogle Scholar
  16. 16.
    Flandrin P, Rilling G, Goncalves P (2004) Empirical mode decomposition as a filter bank. IEEE Signal Process Lett 11:112–114CrossRefGoogle Scholar
  17. 17.
    Ghahremani M, Ghassemian H (2016) Nonlinear ihs: a promising method for pan-sharpening. IEEE Geoscience and Remote Sensing Letters (GRSL) 13:1606–1610.  https://doi.org/10.1109/LGRS.2016.2597271 CrossRefGoogle Scholar
  18. 18.
    Grosek J, Kutz JN (2014) Dynamic mode decomposition for real-time background/foreground separation in video. arXiv:1404.7592
  19. 19.
    Huang NE, Shen Z, Long SR et al (1998) The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc Royal Soc London A: Math, Phys Eng Sci 454(1971):903–995.  https://doi.org/10.1098/rspa.1998.0193 MathSciNetCrossRefGoogle Scholar
  20. 20.
    Jin B, Kim G, Cho NI (2014) Wavelet-domain satellite image fusion based on a generalized fusion equation. J Appl Remote Sens 8(1):080599CrossRefGoogle Scholar
  21. 21.
    Kutz JN (2013) Data-driven modeling and scientific computation: methods for complex systems and big data. Oxford University Press, Inc., New YorkzbMATHGoogle Scholar
  22. 22.
    Li S, Kang X, Hu J (2013) Image fusion with guided filtering. IEEE Trans Image Process 22:2864–2875CrossRefGoogle Scholar
  23. 23.
    Linderhed A (2005) Compression by image empirical mode decomposition. In: IEEE International Conference on Image Processing 2005, 1 I–553–6Google Scholar
  24. 24.
    Linderhed A (2009) Image empirical mode decomposition: a new tool for image processing. Advan Adaptive Data Anal 01:265–294.  https://doi.org/10.1142/S1793536909000138 MathSciNetCrossRefGoogle Scholar
  25. 25.
    Liu Z, Peng S (2005) Boundary processing of bidimensional emd using texture synthesis. IEEE Signal Process Lett 12:33–36CrossRefGoogle Scholar
  26. 26.
    Liu Z, Wang H, Peng S (2004) Texture segmentation using directional empirical mode decomposition. In: ICIP ?04. International Conference on Image Processing, 2004, vol 1, pp 279–282Google Scholar
  27. 27.
    Looney D, Mandic DP (2009) Multiscale image fusion using complex extensions of emd. IEEE Trans Signal Process 57:1626–1630MathSciNetCrossRefGoogle Scholar
  28. 28.
    Ming T, Shun S, Hsuen S (2001) A new look at ihs-like image fusion methods. Inform Fusion 2(3):177–186.  https://doi.org/10.1016/S1566-2535(01)00036-7 CrossRefGoogle Scholar
  29. 29.
    Moushmi S, Sowmya V, Soman K (2015) Multispectral and panchromatic image fusion using empirical wavelet transform. Indian J Sci Technol 8:1–7CrossRefGoogle Scholar
  30. 30.
    Nunes J, Bouaoune Y, Delechelle E et al (2003) Image analysis by bidimensional empirical mode decomposition. Image Vis Comput 21(12):1019–1026CrossRefGoogle Scholar
  31. 31.
    Proctor JL, Eckhoff PA (2015) Discovering dynamic patterns from infectious disease data using dynamic mode decomposition. Int Health 7(2):139CrossRefGoogle Scholar
  32. 32.
    Rowley CW, Mezia S, Igorand Bagheri P et al (2009) Schlatter Spectral analysis of nonlinear flows. J Fluid Mech 641:115–127MathSciNetCrossRefGoogle Scholar
  33. 33.
    Sahu DK, Parsai M (2012) Different image fusion techniques–a critical review. International Journal of Modern Engineering Research (IJMER) 2(5):4298–4301Google Scholar
  34. 34.
    Schmid PJ, Li L, Juniper MP et al (2011) Applications of the dynamic mode decomposition. Theor Comput Fluid Dyn 25(1):249–259CrossRefGoogle Scholar
  35. 35.
    Schmidpeter J (2010) Dynamic mode decomposition of numerical and experimental data. J Fluid Mech 656:5–28MathSciNetCrossRefGoogle Scholar
  36. 36.
    Schmitt J, Pustelnik N, Borgnat P et al (2014) 2d prony-huang transform: a new tool for 2d spectral analysis. IEEE Trans Image Process 23:5233–5248MathSciNetCrossRefGoogle Scholar
  37. 37.
    Tanaka K, Mizuno Y, Tanaka T et al (2013) Detection of phase synchronization in eeg with bivariate empirical mode decomposition. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp 973–976Google Scholar
  38. 38.
    Tu TM, Cheng WC, Chang CP et al (2007) Best tradeoff for high-resolution image fusion to preserve spatial details and minimize color distortion. IEEE Geosci Remote Sens Lett 4:302–306CrossRefGoogle Scholar
  39. 39.
    Vishnu Pradeep V, Sowmya V, Soman K (2016) Variational mode decomposition based multispectral and panchromatic image fusion. IJCTA 9(16):8051–8059Google Scholar
  40. 40.
    Vishnu Pradeep V, Sowmya V, Soman K (2017) Application of m-band wavelet in pan-sharpening. J Intell Fuzzy Syst 32:3151–3158CrossRefGoogle Scholar
  41. 41.
    Wang J, Zhang J, Liu Z (2008) Emd based multi-scale model for high resolution image fusion. Geo-spatial Inform Sci 11(1):31–37CrossRefGoogle Scholar
  42. 42.
    Wang Z, Ziou D, Armenakis C et al (2005) A comparative analysis of image fusion methods. IEEE Trans Geosci Remote Sens 43:1391–1402CrossRefGoogle Scholar
  43. 43.
    Xu Q, Li B, Zhang Y et al (2014) High-fidelity component substitution pansharpening by the fitting of substitution data. IEEE Trans Geosci Remote Sens 52:7380–7392CrossRefGoogle Scholar
  44. 44.
    Xu Q, Zhang Y, Li B et al (2015) Pansharpening using regression of classified ms and pan images to reduce color distortion. IEEE Geosci Remote Sens Lett 12:28–32CrossRefGoogle Scholar
  45. 45.
    Zhang Y (1999) A new merging method and its spectral and spatial effects. Int J Remote Sens 20(10):2003–2014CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Computational Engineering and Networking (CEN), Amrita School of EngineeringAmrita Vishwa VidyapeethamCoimbatoreIndia

Personalised recommendations