Advertisement

Multimedia Tools and Applications

, Volume 77, Issue 17, pp 22489–22542 | Cite as

Foreground segmentation with PTZ camera: a survey

  • E. Komagal
  • B. Yogameena
Article
  • 51 Downloads

Abstract

The alertness of terrorism in the present is greater than that in the past b with reference to the incident of September 11. Still now, there has been a fight against terrorism and that has triggered a novel effort to locate the enhanced approaches with a higher-end camera. A Pan Tilt Zoom (PTZ) camera, which is a type of such high-end camera with multi-functionalities, can be used for identifying such potential threats. Consequently, the background modeling has an increasing significance in the computer vision to segment the foreground objects for further analysis in video surveillance applications. A PTZ camera offers a lot of benefits over normal fixed cameras. It provides an easy installation with 360° plane and greater flexibility. Although numerous surveys on static camera methods have already been proposed to model background, these methods do not adopt maximized large-scale scene coverage as well as frame quality to recognize specific targets compared to the PTZ camera. This motivates the survey to address the issues and techniques related to the PTZ background modeling, since there is no survey on this emerging area. The sole objective of this paper is to present a brief survey on the PTZ camera-based foreground segmentation method, which is very indispensable for high level analysis. It also provides an overview of various techniques from the literature that addresses the challenges, solutions, key aspects of the PTZ camera-based foreground segmentation methods, categorization of different approaches as well as the available datasets used for experimentation, and important future scope along with left over challenges for the computer vision researchers with applications.

Keywords

Foreground segmentation PTZ camera Multi-functionality Coverage Computer vision 

Notes

Acknowledgements

This work has been supported under the Department of Science and Technology (DST) Fast Track Young Scientist Scheme for the project entitled, “Intelligent Surveillance System for Crowd Density Estimation and Human Action Analysis” with reference no. SR/FTP/ETA-49/2012.

References

  1. 1.
    Allebosch G, Deboeverie F, Veelaert P, Philips W (2015) EFIC: edge based foreground background segmentation and interior classification for dynamic camera viewpoints. In: Advanced Concepts for Intelligent Vision Systems (ACIVS), Catania, ItalyGoogle Scholar
  2. 2.
    Allebosch G, van Hamme D, Deboeverie F, Veelaert P, Philips W (2015) C-EFIC: color and edge based foreground background segmentation with interior classification, submitted to computer vision, imaging and computer graphics theory and applicationsGoogle Scholar
  3. 3.
    Álvarez S, Llorca DF, Sotelo MA (2014) Hierarchical camera auto-calibration for traffic surveillance systems. Expert Syst Appl 41(2014):1532–1542CrossRefGoogle Scholar
  4. 4.
    Araki S, Matsuoka T, Takemura H, Yokoya N (1998) Real-time tracking of multiple moving objects in moving camera image sequences using robust statistics. Proc ICPR 2:1433–1435Google Scholar
  5. 5.
    Asif M, Soraghan J (2008) Video analytics for panning camera in dynamic surveillance environment. 50th international symposium, on 10–12 Sep (2008)Google Scholar
  6. 6.
    Avolaa D, Cinque L, Foresti GL, Massaroni C, Pannone D (2017) Keypoint-based method for background modeling and foreground detection using a PTZ camera. Pattern Recogn Lett 96:96–105CrossRefGoogle Scholar
  7. 7.
    Babaee M, Dinh D, Rigoll G (2017) A deep convolutional neural network for background subtraction. Institute for Human-Machine Communication, Technical Univ of Munich, GermanyGoogle Scholar
  8. 8.
    Barnich O, Van Droogenbroeck M (2011) ViBe: a universal background subtraction algorithm for video sequences. IEEE Trans Image Process 20(6):1709–1724MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Bartoli A, Dalal N, Horaud R (2004) Motion panoramas. Comput Animat Virtual World 15(5):501–517CrossRefGoogle Scholar
  10. 10.
    Bashir F, Porikli F (2007) Collaborative tracking of objects in EPTZ cameras SPIE, Video Cod3D multivariate ing & Image Processing (VCIP), TR2006–088 March 2007Google Scholar
  11. 11.
    Bay H, Tuytelaars T, van Gool L (2004) SURF: speeded up robust features pp 1–14Google Scholar
  12. 12.
    Benezeth Y, Jodoin P-M, Emile B, Laurent H, Rosenberger C (2010) Comparative study of background subtraction algorithms. J Electr Imaging 19(3):1–12Google Scholar
  13. 13.
    Bertelli L, Yu T, Vu D, Gokturk B (2011) Kernelized structural SVM learning for supervised object segmentation. Proceedings of IEEE conference on computer vision and pattern recognition 2153–2160Google Scholar
  14. 14.
    Bevilacqua SLD, Azzari P (2005) An effective real-time mosaicing algorithm apt to detect motion through background subtraction using a PTZ camera: In Proc. IEEE Int. Conf. AVSS, pp 511–516Google Scholar
  15. 15.
    Bevilacqua A, Azzari P (2006) High-quality real time motion detection using PTZ cameras. In: Proc. IEEE Int. Conf. on Nov (2006) video signal based Surveill., p 23Google Scholar
  16. 16.
    Bevilacqua A, Kamel M, Campilho A, Azzari P (2007) A fast and reliable image mosaicing technique with application to wide area motion detection. In: Image analysis and recognition (Lecture Notes in Computer Science, vol. 4633), Germany: Springer, pp 501–512Google Scholar
  17. 17.
    Bianco S, Ciocca G, Schettini R (2015) How far can you get by combining change detection algorithms?. Ver.1. Submitted to IEEE transactions on image processing, (arXiv:1505.02921)Google Scholar
  18. 18.
    Bianco S, Ciocca G, Schettini R (2015) How far can you get by combining change detection algorithms?. Ver.2. Submitted to IEEE transactions on image processing, (arXiv:1505.02921)Google Scholar
  19. 19.
    Bianco S, Ciocca G, Schettini R (2015) How far can you get by combining change detection algorithms?. Ver.3. Submitted to IEEE transactions on image processing, (arXiv:1505.02921)Google Scholar
  20. 20.
    Bianco S, Ciocca G, Schettini R (2015) How far can you get by combining change detection algorithms?. Ver.5. Submitted to IEEE transactions on image processing. (arXiv:1505.02921)Google Scholar
  21. 21.
    Bilodeau G-A, Jodoin J-P, Saunier N (2013) Change detection in feature space using local binary similarity patterns. In: Computer and Robot Vision (CRV), International Conference, pp 106–112Google Scholar
  22. 22.
    Bloisi DD, Iocchi L (2008) Rek-means a k-means based clustering algorithm: In: Computer vision systems pp 109–118Google Scholar
  23. 23.
    Boulmerka A, Allili MS (2017) Foreground segmentation in videos combining general Gaussian mixture modeling and spatial information. IEEE Trans Circ Syst Video Technol (99):1Google Scholar
  24. 24.
    Bouwmans T (2011) Recent advanced statistical background modeling for foreground detection: a systematic survey. Recent Patents Comput Sci 4(3):147–171Google Scholar
  25. 25.
    Bouwmans T (2014) Traditional and recent approaches in background modeling for foreground detection. An overview. Elsevier Inc. Comput Sci Rev 11-12(2014):31–66CrossRefMATHGoogle Scholar
  26. 26.
    Bouwmans MT, El Baf F, Vachon B (2008) Background modeling using mixture of Gaussians for foreground detection –a survey. Author manuscript, published in Recent Patents on Computer Science 1(3):219–237Google Scholar
  27. 27.
    Bouwmans T, El-Baf F, Vachon B (2010) Statistical background modeling for foreground detection: a survey. In: Handbook of pattern recognition and computer vision, 4(2), World Scientific Publishing, pp 181–199Google Scholar
  28. 28.
    Bouwmans T, Silva C, Marghes C, Zitouni MS, Bhaskar H, Frelicot C (2018) On the role and the importance of features for background modeling and foreground detection. Comput Sci Rev 28(2018):26–91MathSciNetCrossRefGoogle Scholar
  29. 29.
    Braham M, van Droogenbroeck M (2016) Deep background subtraction with scene-specific convolutional neural networks. In: IEEE international conference on systems, signals and image processing (IWSSIP), Bratislava, Slovakia, pp 1–4Google Scholar
  30. 30.
    Brox Tand Malik J (2010) Object segmentation by long term analysis of point trajectories. In: Proc. ECCV, pp 282–295Google Scholar
  31. 31.
    Brutzer S, Hoferlin B, Heidemann G (2011) Evaluation of background subtraction techniques for video surveillance. In: Proc. CVPR, pp 1937–1944Google Scholar
  32. 32.
    Chen Y, Zhao K, Wu W, Liu S (2014) Background subtraction: model-sharing strategy based on temporal variation analysis. In: Springer International Publishing, Computer Vision-ACCV (2014) Workshops, Volume 9009, pp 333–343Google Scholar
  33. 33.
    Chen Y, Wang J, Lu H (2015) Learning sharable models for robust background subtraction. In: Multimedia and Expo (ICME), IEEE International Conference, pp 1–6Google Scholar
  34. 34.
    Chen Y, Wang J, Xu M, He, Lu H (2015) A unified model sharing frame work for moving object detection. Signal Process.  https://doi.org/10.1016/j.sigpro.2015.10.011i
  35. 35.
    Cheung S-CS, Kamath C (2004) Robust techniques for background subtraction in urban traffic video. In: Proc. EI-VCIP, pp 881–892Google Scholar
  36. 36.
    Cho S-H, Kang H-B Panoramic background generation using mean-shift in moving camera environmentGoogle Scholar
  37. 37.
    Cucchiara R, Grana C, Piccardi M, Prati A (2003) Detecting moving objects, ghosts, and shadows in video streams. Pattern Anal Mach Intell IEEE Trans 25(10):1337–1342CrossRefGoogle Scholar
  38. 38.
    Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: CVPR, pp 886–893Google Scholar
  39. 39.
    de Gregorio M, Giordano M (2014) Change detection with weightless neural networks. In: Proc of IEEE workshop on change detectionGoogle Scholar
  40. 40.
    de Gregorio M, Giordano M (2016) WISARDRP for change detection in video sequences. Submitted to (CVPR’16)Google Scholar
  41. 41.
    Detmold H, van den Hengel A, Dick A, Madden C, Cichowski A, Hill R (2009) Surprisal-aware scheduling of PTZ cameras. In: Third ACM/IEEE international conference distributed smart cameras, ICDSC., pp 1–8Google Scholar
  42. 42.
    Dhou S, Motai Y (2015) Dynamic 3D surface reconstruction and motion modeling from a pan–tilt–zoom camera. Comput Ind 70(2015):183–193CrossRefGoogle Scholar
  43. 43.
    Dimou A, Medentzidou P, Álvarez García F, Daras P (2016) Multi-target detection in CCTV footage for tracking applications using deep learning techniques. IEEE International Conference on Image Processing (ICIP), 25–28 Sept. 2016Google Scholar
  44. 44.
    Dinh T, Yu Q, Medioni G (2009) Real time tracking using an active pan-tilt-zoom network camera intelligent robots and systems. IROS. 10-15 Oct (2009). IEEE/RSJ, pp 3786–3793Google Scholar
  45. 45.
    El Baf F, Bouwmans T, Vachon B (2007) Comparison of background subtraction methods for a multimedia learning space. Int Conf on signal processing and multimedia (SIGMAP July 2007), Barcelona, SpainGoogle Scholar
  46. 46.
    Elgammal A (2011) Figure-ground segmentation - pixel-based: In: Springer publication. Visual analysis of humans, pp 31–51. doi: https://doi.org/10.1007/978-0-85729-997-0_3
  47. 47.
    Elgammal A, Harwood D, Davis L (2000) Non-parametric model for background subtraction. In: Proc. Eur. Conf. on Computer Vision, Lect. Notes Comput. Sci., 751–767Google Scholar
  48. 48.
    Elhabian S, El Sayed K, Ahmed S (2008) Moving object detection in spatial domain using background removal techniques: Stateof-art. Recent Patents Comput Sci 1(1):32–54CrossRefGoogle Scholar
  49. 49.
    Elqursh A, Elgammal A Online moving camera background subtraction. In: Computer VisionECCV (Lecture Notes in Computer Science, vol. 7577)Google Scholar
  50. 50.
    Faisal Qureshi Z, Terzopoulos D (2009) Planning ahead for PTZ camera assignment and handoff. IEEE International Conf.  https://doi.org/10.1109/ICDSC.2009.5289420
  51. 51.
    Ferone A, Maddalena L (2013) Neural background subtraction for pan-tilt-zoom cameras. In: IEEE transactions on systems, man and cybernetics systems on 16th september (2013) pp 571–579Google Scholar
  52. 52.
    Fitzgibbon A, Lazebnik S, Perona P, Sato Y, Schmid C (2012) Springer, Berlin pp 228–241Google Scholar
  53. 53.
    Fradi H, Eiselein V, Dugelay J-L, Keller I, Sikora T (2015) Spatio-temporal crowd density model in a human detection and tracking framework. Signal Process Image Commun 31:100–111CrossRefGoogle Scholar
  54. 54.
    Ghidoni S, Anzalone SM, Munaroa M, Michieletto S, Menegatti E (2014) A distributed perception infrastructure for robot assisted living. Robot Auton Syst 62(2014):1316–1328CrossRefGoogle Scholar
  55. 55.
    Glasbey CA (1998) A review of image warping methods. J Appl Stat 25:155–171CrossRefMATHGoogle Scholar
  56. 56.
    Guillot C, Taron M, Sayd P, Pham Q-C, Tilmant C, Lavest J-M (2010) Background subtraction adapted to PTZ cameras by keypoint density estimation. British machine vision conference, BMVC 2010, Aberystwyth, UK. Proceedings, Aug 31- Sep 3 (2010), 105244/C24.34Google Scholar
  57. 57.
    Hayman E, Eklundh J-O (2003) Statistical background subtraction for a mobile observer: In: Proceedings ICCV, pp 67–74Google Scholar
  58. 58.
    Hayman E, Eklundh J et al (2003) Statistical background subtraction for a mobile observer. In: Proc. ICCV, vol. 1, pp 67–74Google Scholar
  59. 59.
    Heikkilä M, Pietikäinen M (2006) A texture based method for modeling the background and detection moving objects. IEEE Trans Pattern Anal Mach Intell 28:657–662CrossRefGoogle Scholar
  60. 60.
    Heikkilä M, Pietikäinen M, Schmid C (2009) Description of interest regions with local binary patterns. Pattern Recogn 42:425–436CrossRefMATHGoogle Scholar
  61. 61.
    Hoedl T, Brandt D, Soergel U, Wiggenhagen M (2008) Real-time orientation of a PTZ-camera based on pedestrian detection in video data of wide and complex scenes. In: The international archives of the photogrammetry. Remote sensing and spatial information sciences. Vol. XXXVIIGoogle Scholar
  62. 62.
    Hsieh J, Chen S-Y, Chuang C-H, Chen Y-S, Guo Z-Y, Fan K-C (2009) Pedestrian segmentation using deformable triangulation and kernel density estimation. In: Proceedings of the eighth international conference on machine learning and cybernetics. Baoding international conference machine learning and cybernetics, pp 3270–3274. doi: https://doi.org/10.1109/ICMLC.2009.5212735
  63. 63.
    Hu J, Hu S, Sun Z (2012) Real time monitor system based on dual-camera cooperative fusion. National Natural Science Foundation, ChinaGoogle Scholar
  64. 64.
    Huang H-P, Cheng M-Y, Shie S-S (2009) Visual tracking based on multiple cameras with MHS cooperation strategy. In: 35th annual conference of IEEE industrial electronics,(IECON3-5 Nov’09). pp 2142–2447Google Scholar
  65. 65.
    Huang Z, Hu R, Chen S (2015) Paper has been submitted to (CVPR’15)Google Scholar
  66. 66.
    Irfan Mehmood A, Muhammad Sajjad A, Waleed Ejaz B, Sung Wook Baik A (2015) Saliency -directed prioritization of visual data in wireless surveillance networks. Inf Fusion 24:16–30CrossRefGoogle Scholar
  67. 67.
    Jain A, Kopell D, Kakligian K, Wang Y-F (2006) Using stationary-dynamic camera assemblies for wide-area video surveillance and selective attention. Proc IEEE Comput Soc Conf Comput Vis Pattern Recogn.  https://doi.org/10.1109/CVPR.2006.327
  68. 68.
    Jung YK, Lee K et al (2002) Feature-based object tracking with an active camera. Proc IEEE Pacific Rim Conf Multimed Adv Multimed Inf Process:137–1144Google Scholar
  69. 69.
    Kadim Z, Daud MM, Syaimaa Solehah Radzi M, Samudin N, Woon HH (2013) Method to detect and track moving object in non-static PTZ camera. In: Proceedings of international multiconference of engineers & computer scientists. Volume 1, IMECS 2013, ISSN: 2078-0966 (Online)Google Scholar
  70. 70.
    Kang S, Paik J, Koschan A, Abidi B, Abidi MA (2003) Real-time video tracking using PTZ cameras. In SPIE 6th international conference on quality control by artificial vision, Volume 5132, pp 103–111Google Scholar
  71. 71.
    Kaur N (2012) Real time automatic object tracking by pan-tilt-zoom cameras in an IP-surveillance system. Int J Comput Eng Res (ijceronlinecom) 2(6):63–69Google Scholar
  72. 72.
    Kelley R, Tavakkoli A, King C, Nicolescu M, Nicolescu M (2010) Understanding activities and intentions for human-robot interaction. INTECH, Croatia, p 288Google Scholar
  73. 73.
    Kim SJ, Doretto G, Rittscher J, Tu P, Krahnstoever N, Pollefeys M (2009) A model change detection approach to dynamic scene modeling. IEEEGoogle Scholar
  74. 74.
    Komagal E, Yogameena B (2017) Region MoG and texture descriptor-based motion segmentation under sudden illumination in continuous pan and excess zoom. Multimed Tools ApplGoogle Scholar
  75. 75.
    Komagal E, Maheshwari A, Yogameena B (2014) Self-adaptation of background modeling for PTZ video surveillance. Int J Appl Eng Res 9(20). ISSN 0973–4562Google Scholar
  76. 76.
    Komagal E, Anusuya Devi P, Kumareshwari M, Vijayalakshmi M (2014) Detection of moving object using foreground extraction algorithm by PTZ camera. Int J Inf Sci Tech (IJIST) 4(3)Google Scholar
  77. 77.
    Kryjak T, Komorkiewicz M, Gorgon M (2014) Real-time implementation of foreground object detection from a moving camera using the ViBE algorithm. Adv Syst Model Lang Agents 11Google Scholar
  78. 78.
    Kwak S, Lim T, Nam W, Han B, Han JH (2011) Generalized background subtraction based on hybrid inference by belief propagation and Bayesian filtering. In: Proc. ICCV, pp 2174–2181Google Scholar
  79. 79.
    Lee S, Kim N, Jeong K, Park K Moving object detection using unstable camera for video surveillance systems. In: Elsevier Science Direct, IJLEO-55638, No. of Pages 6Google Scholar
  80. 80.
    Li Z, Hu J, Hu S, Sun Z (2014) Tracking-learning-detection algorithm applied in eagle eye system. J Comput Inf Syst 10(5):1931–1938Google Scholar
  81. 81.
    Liang D, Kaneko S (2014) Improvements and experiments of a compact statistical background model. In: The proceedings of computer vision and pattern recognitionGoogle Scholar
  82. 82.
    Lien S-F, Hsia K-H, Su J-P (2015) Moving target tracking based on camshift approach and Kalman filter. Int J Appl Math Inf SciGoogle Scholar
  83. 83.
    Liu GH, Zhang L, Hou YK, Li ZY, Yang JY (2010) Image retrieval based on multi-texton histogram. Pattern Recogn 43(7):2380–2389 ISSN 0031-3203CrossRefMATHGoogle Scholar
  84. 84.
    Liu Y, Shi H, Lai S, Zuo C, Zhang M (2014) A spatial calibration method for master-slave surveillance system. Optik 125(2014):2479–2483CrossRefGoogle Scholar
  85. 85.
    Liu N, Wu H, Lin L (2015) Hierarchical ensemble of background models for PTZ-based video surveillance. IEEE Trans Cybernet 45(1):89–102CrossRefGoogle Scholar
  86. 86.
    López-Rubio FJ, López-Rubio E (2015) Foreground detection for moving cameras with stochastic approximation. Pattern Recogn Lett 68(2015):161–168CrossRefGoogle Scholar
  87. 87.
    Lowe DG (2004) Distinctive image features from scale-invariant key- points. Int J Comput Vis 60:91–110CrossRefGoogle Scholar
  88. 88.
    Lu X (2014) A multiscale spatio-temporal background model for motion detection (ICIP’14)Google Scholar
  89. 89.
    Maddalena L, Petrosino A (2008) A self-organizing approach to background subtraction for visual surveillance applications. IEEE Trans Image Process 17(7):1168–1177MathSciNetCrossRefGoogle Scholar
  90. 90.
    Maddalena L, Petrosino A (2010) A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection. Neural Comput Appl. Springer London19:179–186Google Scholar
  91. 91.
    Maddalena L, Petrosino A (2012) The SOBS algorithm: what are the limits? In: Proc of IEEE Workshop on Change Detection (CVPR’12)Google Scholar
  92. 92.
    Manfredi M, Vezzani R, Calderara S, Cucchiara R (2014) Detection of static groups and crowds gathered in open spaces by texture classification. Pattern Recogn Lett 44(2014):39–48CrossRefGoogle Scholar
  93. 93.
    Micheloni C, Foresti GL (2006) Real-time image processing for active monitoring of wide areas. J Vis Commun Image Represent 17(3):589–604CrossRefGoogle Scholar
  94. 94.
    Micheloni C, Rinner B, Foresti G (2010) Video analysis in pan-tilt zoom camera networks. IEEE Signal Process Mag 27(5):78–90CrossRefGoogle Scholar
  95. 95.
    Miron A, Badii A (2015) Change detection based on graph cuts. (IWSSIP’15)Google Scholar
  96. 96.
    Mittal A, Huttenlocher D (2000) Scene modeling for wide area surveillance and image synthesis. In: Proc. CVPR vol. 2, pp 160–167Google Scholar
  97. 97.
    Monari E (2013) Illumination invariant background subtraction for pan/tilt cameras using DoG responses. In: International conference on imaging for crime detection and preventionGoogle Scholar
  98. 98.
    Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24:971–987CrossRefMATHGoogle Scholar
  99. 99.
    Persad RA, Armenakis C, Sohn G (2010) Calibration of a PTZ surveillance camera using 3D indoor model. Can Geomatics Conf.  https://doi.org/10.1109/TPAMI.2012.250
  100. 100.
    Petrosino A, Maddalena L, Bouwmans T (2017) Editorial–Scene background modeling and initialization. Pattern Recogn Lett 1–2Google Scholar
  101. 101.
    Pham XD, Cho JU, Jeon JW (2008) Background compensation using though transformation. In: Proc. IEEE ICRA, may (2008). pp 2392–2397Google Scholar
  102. 102.
    Piccardi M (2004) Background subtraction techniques: a review. In: IEEE international conference on systems, man and cybernetics. doi: https://doi.org/10.1109/ICSMC.2004.1400815
  103. 103.
    Possegger H, Rüther M, Sternig S, Mauthner T (2012) Unsupervised calibration of camera networks and virtual PTZ cameras. 17th computer vision winter workshop. In: Kristan M, Mandeljc R, Cěhovin L (Eds.) Mala Nedelja, Feb 1–3 (2012), Slovenia, pp 1–8Google Scholar
  104. 104.
    Pulver A, Chang M-C, Lyu S (2015) Shot segmentation and grouping for PTZ camera vide. In: 10th annual symposium on information assurance. pp 34–37Google Scholar
  105. 105.
    Radke RJ, Andra S, Al-Kofahi O, Roysam B (2005) Image change detection algorithms: a systematic survey. IEEE Trans Image Process 14(3):294–307MathSciNetCrossRefGoogle Scholar
  106. 106.
    Radzi SSM, Nizam S, Yaakob ZK, Woon HH (2014) Extraction of moving objects using frame differencing, ghost and shadow removal. Fifth international conference on intelligent systems, modeling and simulation, IEEE, 01 October 2015. doi: https://doi.org/10.1109/ISMS2014154
  107. 107.
    Ramirez-Alonsoy G, Chacon-Murguia M (2016) Auto-adaptive parallel SOM architecture with a modular analysis for dynamic object segmentation in videos. Neurocomputing 175, pp:990–1000.  https://doi.org/10.1016/j.neucom.2015.04.118 CrossRefGoogle Scholar
  108. 108.
    Reljin N, McDaniel S, Pokrajac D, Pejcic N, Vance T, Lazarevic A, Latecki LJ (2010) Small moving targets detection using outlier detection algorithms. SPIE Proc 7698.  https://doi.org/10.1117/12.850550
  109. 109.
    Ren Y, Chua C-S, Ho Y-K (2003) Statistical background modeling for non-stationary camera. Pattern Recogn Lett 24(1–3):183–196CrossRefMATHGoogle Scholar
  110. 110.
    Robinault L, Bres S, Minguet S (2009) Real time foreground objetct detection using PTZ camera. International conference on computer vision thory and application, pp 609–614Google Scholar
  111. 111.
    Rosten E, Porter R, Drummond T (2010) Faster and better: a machine learning approach to corner detection. IEEE Trans Pattern Anal Mach Intell 32(2010):105–119CrossRefGoogle Scholar
  112. 112.
    Sajid H (2016) Robust background subtraction for moving cameras and their applications in Ego-vision systems. Theses and dissertations--electrical and computer engineering. University of Kentucky. doi: https://doi.org/10.13023/ETD2016.389
  113. 113.
    Sajid H, Cheung S-CS (2014) Background subtraction under sudden illumination change. In: Multimedia Signal Processing (MMSP), IEEE 16th International Workshop. IEEE, pp 1–6Google Scholar
  114. 114.
    Sajid H, Cheung S-CS (2015) Background subtraction for static and moving camera. Accepted for IEEE international conference on image processing(ICIP’15)Google Scholar
  115. 115.
    Sajid H, Cheung S-CS (2015) Universal multimode background subtraction. Submitted to IEEE transactions on image processingGoogle Scholar
  116. 116.
    Sami Zitouni M, Bhaskar H, Sluzek A (2017) Dynamic textures based target detection for PTZ camera sequences, Systems, Man, and Cybernetics (SMC), 2017 IEEE International Conference on 5–8 Oct. 2017Google Scholar
  117. 117.
    Sedky M, Moniri M, Chibelushi CC (2014) Spectral-360: a physical-based technique for change detection. In: Proc of IEEE workshop on change detection, CVPR workshopGoogle Scholar
  118. 118.
    Senst T, Eiselein V, Sikora T (2012) Robust local optical flow for feature tracking. Trans Cir Syst Video Technol 9(99)Google Scholar
  119. 119.
    Sheikh Y, Javed O, Kanade T (2009) Background subtraction for freely moving cameras. In: Proc. ICCV, pp 1219–1225Google Scholar
  120. 120.
    Shi J, Tomasi C (1994) Good features to track. In: CVPR, pp 593–600.  https://doi.org/10.1109/CVPR.1994.323794 Google Scholar
  121. 121.
    Sihna SN, Pollefeys M, Kim SJ (2004) High–resolution multiscale panoramix mosaics from pan-tilt-zoom cameras. Indian conference on computer vision, graphics abd image processing, pp 28–33Google Scholar
  122. 122.
    Silva C, Bouwmans T, Frelicot C (2015) An extended center-symmetric local binary pattern for background modeling and subtraction in videosGoogle Scholar
  123. 123.
    Sinha SN, Pollefeys M (2006) Pan-tilt-zoom camera calibration and high-resolution mosaic generation. Comput Vis Image Und 103(3):170–183CrossRefGoogle Scholar
  124. 124.
    Solehah S, Yaakob SN, Kadim Z, Woon HH (2012) Moving object extraction in PTZ camera using the integration of background subtraction and local histogram processing. International symposium on December 3–4 (2012) computer applications and industrial electronics (ISCAIE’12)Google Scholar
  125. 125.
    Springett J, Vendrig J (2008) Spatio-activity based object detection: In: AVSS conference, 803Google Scholar
  126. 126.
    Sriram Varadarajan N, Miller P, Zhou H (2015) Region-based mixture of Gaussians modeling for foreground detection in dynamic scenes. Pattern Recogn 48(2015):3488–3503CrossRefGoogle Scholar
  127. 127.
    Stauffer C, Grimson WEL (1999) Adaptive background mixture models for real-time tracking. In: Proc. Int. Conf. on Computer Vision and Pattern Recognition, Vol. 2, IEEE, PiscatawayGoogle Scholar
  128. 128.
    St-Charles P-L, Bilodeau G-A (2014) Improving background subtraction using local binary similarity patterns. In: Applications of Computer Vision (WACV), IEEE computer society winter conferenceGoogle Scholar
  129. 129.
    St-Charles P-L, Bilodeau G-A, Bergevin R (2014) Subsense: a universal change detection method with local adaptive sensitivity. IEEE PublicationGoogle Scholar
  130. 130.
    St-Charles P-L, Bilodeau G-A, Bergevin R (2014) Flexible background subtraction with self-balanced local sensitivity. IEEE conference 414–419Google Scholar
  131. 131.
    St-Charles PL, Bilodeau GA, Bergevin R (2015) A self-adjusting approach to change detection based on background word consensus. In: IEEE Winter Conference on Applications of Computer Vision (WACV). Big Island, Hawaii, Jan. 6–9 (2015), USAGoogle Scholar
  132. 132.
    Suhr JK, Jung HG, Li G, Noh S–I, Kim Mar J (2011) Background compensation for pan-tilt-zoom cameras using 1-d feature matching and outlier rejection. IEEE Trans Circ Syst Video Technol 21(3):371–377CrossRefGoogle Scholar
  133. 133.
    Szeliski R (2006) Image alignment and stitching: a tutorial foundations and trends R. Comput Graph Vis 2(1):1–104MATHGoogle Scholar
  134. 134.
    Szeliski R, Shum HY (1997) Creating full view panoramic image mosaics and environment maps, SIGGRAPHGoogle Scholar
  135. 135.
    T’Jampens R, Hernandez F, Vandecasteele F, Verstockt S (2016) Automatic detection, tracking and counting of birds in marine video content. IEEEGoogle Scholar
  136. 136.
    Thurnhofer-Hemsi K, López-Rubio E Domínguez E (2017) Panoramic background modeling for PTZ cameras with competitive learning neural networks, Neural Networks (IJCNN), 2017 International Joint Conference on 14-19 May 2017Google Scholar
  137. 137.
    Tomasi C, Kanade T (1991) Detection and tracking of point features. Technical report CMU-CS-91-132, CMUGoogle Scholar
  138. 138.
    Varadarajan MS, Huiyu Zhou P (2013) Spatial mixture of Gaussians for dynamic background modeling. Advanced Video and Signal Based Surveillance (AVSS), 10th IEEE International Conference on (27–30 Aug’13), pp 63–68Google Scholar
  139. 139.
    Varadarajan S, Wang H, Miller P, Zhou H (2015) Fast convergence of regularised region-based mixture of Gaussians for dynamic background modeling. Comput Vis Image Underst 136(2015):45–58CrossRefGoogle Scholar
  140. 140.
    Varcheie P, Bilodeau GA (2011) Adaptive fuzzy particle filter tracker for a PTZ camera in an IP surveillance system. IEEE Trans Instrum Meas 60(2):354–371CrossRefGoogle Scholar
  141. 141.
    Vishnyakov B, Gorbatsevich V, Sidyakin S, Vizilter Y, Malin IandEgorov A (2014) Fast moving objects detection using ilbp background model. Intl Arch Photogrammetry Remote Sens Spatial Inf Sci XL 3:347–350CrossRefGoogle Scholar
  142. 142.
    Viswanath A, Behera RK, Senthamilarasu V, Kutty K (2015) Background modeling from a moving camera. In: Second international symposium on computer vision and the internet. doi: https://doi.org/10.1016/j.procs.2015.08.023
  143. 143.
    Wang X (2013) Intelligent multi-camera video surveillance: a review. Pattern Recogn Lett 34:3–19CrossRefGoogle Scholar
  144. 144.
    Wang B, Dudek P (2014) A fast self-tuning background subtraction algorithm. In: Proc of IEEE workshop on change detection, 25 September 2014. doi: https://doi.org/10.1109/CVPRW.2014.64
  145. 145.
    Wang ZZ, Taylor CN (2013) A multimodal temporal panorama approach for moving vehicle detection, reconstruction and classification. Comput Vis Image Underst 117(2013):1724–1735CrossRefGoogle Scholar
  146. 146.
    Wang R, Bunyak F, Seetharaman G, Palaniappan K (2014) Static and moving object detection using flux tensor with split gaussian models. In: IEEE conference on computer vision and pattern recognition workshops. doi: https://doi.org/10.1109/CVPRW.2014.68
  147. 147.
    Wang Y, Jodoin P-M, Porikli F, Konrad J, Benezeth Y, Ishwar P (2014) An expanded change detection benchmark dataset, CDnet in Proc IEEE, pp 387–394Google Scholar
  148. 148.
    Wang K, Gou C, Liu Y, Wang F-Y (2015) M4CD: a robust change detection method with multimodal background modeling and multi-view foreground learning. Submitted to IEEE transactions on image processingGoogle Scholar
  149. 149.
    Wheeler FW, Liu X, Tu PH, RT Hoctor (2007) Multi-frame image restoration for face recognition. In: IEEE workshop on signal processing applications for public security and forensicsGoogle Scholar
  150. 150.
    Wu S, Zhao T, Broaddus C, Yang C, Aggarwal M (2006) Robust pan, tilt and zoom estimation for PTZ camera by using meta data and or frame-to-frame correspondences. Proc. ICARCV, Singapore, pp 1–7Google Scholar
  151. 151.
    Xu Y, Song D (2010) Systems and algorithms for autonomous and scalable crowd surveillance using robotic PTZ cameras assisted by a wide-angle camera. Springer., IIS-0643298 and MRI-0923203. Volume 29, July (2010) Issue 1, pp 53–66Google Scholar
  152. 152.
    Xue K, Liu Y, Chen J, Liu Q (2010) Panoramic background model For PTZ camera. In: 3rd international congress on image and signal processing on 16–18 Oct (CISP2010). pp 409–413Google Scholar
  153. 153.
    Xue K, Liu Y, Chen J, Li Q (2010) Panoramic background model for PTZ camera. CISP, pp 409–413Google Scholar
  154. 154.
    Xue K, Ogunmakin G, Liu Y, Vela PA, Wang Y (2011) PTZ camera a-based adaptive panoramic and muli-layered background model. In: 18th IEEE international conference on 11–14 Sep (2011) Image processing, pp 2949–2952Google Scholar
  155. 155.
    Xue G, Song L, Sun J, Wu M (2011) Hybrid center-symmetric local pattern for dynamic background subtraction. In: IEEE Int Conf on multimedia and Expo, pp 1–6Google Scholar
  156. 156.
    Yanga C, Zhub W, Liu J, Chena L, Chena D, Caob J (2015) Self-orienting the cameras for maximizing the view-coverage ratio in camera sensor networks. Pervasive Mob Comput 17(2015):102–121CrossRefGoogle Scholar
  157. 157.
    Yazdi M, Bouwmans T New trends on moving object detection in video images captured by a moving camera: a survey, computer science review. 2018, 28:157–177Google Scholar
  158. 158.
    Ye Y, Ci S, Katsaggelos AK, Liu Y, Yi Q (2013) Wireless video surveillance. A survey. IEEE Access 1:2169–3536Google Scholar
  159. 159.
    Yi Xie, Liang Lin, Yunde Jia (2010) Tracking objects with adaptive feature patches for PTZ camera visual surveillance. International conference on 23-26 Aug (2010) pattern recognition, pp 1739–1742Google Scholar
  160. 160.
    Yi KM, Yun K, Kim SW, Chang HJ, Jeong H, Choi JY Detection of moving objects with non-stationary cameras in 5.8ms: bringing motion detection to your mobile device. In: The conference Computer Vision and Pattern Recognition Workshops (CVPRW’13)Google Scholar
  161. 161.
    Yu Q, Medioni G (2008) A GPU-based implementation of motion detection from a moving platform. In: IEEE Computer Society Conference (CVPRW). doi: https://doi.org/10.1109/CVPRW.2008.4563096
  162. 162.
    Wu Z, Radke RJ (2012) Using scene features to improve wide-area video surveillance: In: IEEE computer society conference on 16–21 june. Computer Vision and Pattern Recognition Workshops (CVPRW), pp 50–57Google Scholar
  163. 163.
    Zamalieva D, Yilmaz A, Davis JW (2014) A multi-transformational model for background subtraction with moving cameras. In: Computer vision-ECCV. Springer, pp 803–817Google Scholar
  164. 164.
    Zhang J, Wang Y, Wang Y, Chen J, Xue K (2010) A framework of surveillance system using a PTZ camera. In: 3rd IEEE international conference on computer science and information technology on 9–11 July (ICCSIT), pp 658–662Google Scholar
  165. 165.
    Zhigang Zhu A, Guangyou Xu B, Edward M, Riseman C, Hanson AR (2006) Fast construction of dynamic and multi-resolution 360° panoramas from video sequence. Image Vis Comput 24:13–26CrossRefGoogle Scholar
  166. 166.
    Zhou X, Yang C, Yu W (2013) Moving object detection by detecting contiguous outliers in the low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(3):597–610CrossRefGoogle Scholar
  167. 167.
    Zivkovic Z (2004) Improved adaptive Gaussian mixture model for back-ground subtraction. In: Proc. Int. Conf. Pattern Recognition, pp. 28–31, IEEE, Piscataway, NJGoogle Scholar
  168. 168.
    Zivkovic Z, van der Heijden F (2006) Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recogn Lett 27(7):773–780CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringVelammal College of Engineering and TechnologyMaduraiIndia
  2. 2.Department of Electronics and Communication EngineeringThiagarajar College of EngineeringMaduraiIndia

Personalised recommendations