Advertisement

Parameter identification of two dimensional digital filters using electro-magnetism optimization

  • Mohamed Elhoseny
  • Diego Oliva
  • Valentín Osuna-Enciso
  • Aboul Ella Hassanien
  • M. Gunasekaran
Article
  • 40 Downloads

Abstract

The design of Two-Dimensional Infinite Input Response Filters (2D IIR) is an important task in the field of signal processing. These filters are widely used in several areas of engineering as an important tool to eliminate undesired frequencies in high-noised signals. However, 2D IIR filters have parameters that need to be calibrated in order to obtain the best output, and finding these optimal values is not an easy task. On the other hand, Electro-magnetism Optimization (EMO) is a population-based technique which possess interesting convergence properties, it works following the electro-magnetism principles for solving complex optimization problems. This paper introduces an algorithm for the automatic parameter identification of 2D IIR filters using EMO, a process that is regarded as a multidimensional optimization problem. Experimental results are included to validate the efficiency of the proposed technique regarding accuracy, speed, and robustness.

Keywords

Two dimensional digital filters Signal processing Electro-magnetism optimization Global optimization 

References

  1. 1.
    Abd Elaziz M, Oliva D, Xiong S (2017) An improved opposition-based sine cosine algorithm for global optimization. Expert Syst Appl.  https://doi.org/10.1016/j.eswa.2017.07.043
  2. 2.
    Ahmed Abdelaziza, Mohamed Elhoseny, Ahmed S. Salama, A.M. Riad, A machine learning model for improving healthcare services on cloud computing environment, Measurement, Volume 119, 2018, Pages 117–128, 2018 doi: https://doi.org/10.1016/j.measurement.2018.01.022
  3. 3.
    Abo-Taleb A, Fahmy MM (1984) Design of FIR two-dimensional digital filters by successive projections. IEEE Trans Circ Syst 31:801–805.  https://doi.org/10.1109/TCS.1984.1085572 CrossRefGoogle Scholar
  4. 4.
    Aggarwal A, Kumar M, Rawat TK, Upadhyay DK (2016) Optimal design of 2D FIR filters with Quadrantally symmetric properties using fractional derivative constraints. Circuits, Syst Signal Process 35:2213–2257.  https://doi.org/10.1007/s00034-016-0283-x CrossRefzbMATHGoogle Scholar
  5. 5.
    Birbil ŞI, Fang SC (2003) An electromagnetism-like mechanism for global optimization. J Glob Optim 25:263–282.  https://doi.org/10.1023/A:1022452626305 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Birbil ŞI, Fang SC, Sheu RL (2004) On the convergence of a population-based global optimization algorithm. J Glob Optim 30:301–318MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cowan EW (1968) Basic electromagnetisme. Academic PressGoogle Scholar
  8. 8.
    Cuevas-Jiménez E, Oliva-Navarro DA (2013) Modelado de filtros {IIR} usando un algoritmo inspirado en el electromagnetismo. Ing Investig y Tecnol 14:125–138.  https://doi.org/10.1016/S1405-7743(13)72231-5 Google Scholar
  9. 9.
    Darwish A, Hassanien AE, Elhoseny M, Sangaiah AK, Muhammad K (2017) The impact of the hybrid platform of internet of things and cloud computing on healthcare systems: opportunities, challenges, and open problems. J Ambient Intell Humaniz Comput.  https://doi.org/10.1007/s12652-017-0659-1
  10. 10.
    Das S, Konar A (2007) A swarm intelligence approach to the synthesis of two-dimensional IIR filters. Eng Appl Artif Intell 20:1086–1096.  https://doi.org/10.1016/j.engappai.2007.02.004 CrossRefGoogle Scholar
  11. 11.
    Elhoseny M, Tharwat A, Yuan X, Hassanien A (2018) Optimizing K-coverage of mobile WSNs. Expert Syst Appl 92:142–153.  https://doi.org/10.1016/j.eswa.2017.09.008 CrossRefGoogle Scholar
  12. 12.
    Mohamed Elhoseny, Ahmed Abdelaziz, Ahmed Salama, AM Riad, Arun Kumar Sangaiah, Khan Muhammad. A hybrid model of internet of things and cloud computing to manage big data in health services applications, future generation computer systems. Elsevier, available online 15 2018. doi: https://doi.org/10.1016/j.future.2018.03.005
  13. 13.
    Elhoseny Mohamed, Ramírez-González Gustavo, Abu-Elnasr Osama M, Shawkat Shihab A, Arunkumar N, Farouk Ahmed Secure medical data transmission model for IoT-based healthcare systems. IEEE Access (Volume: PP, Issue: 99). doi: https://doi.org/10.1109/ACCESS.2018.2817615
  14. 14.
    Getin a E, Gerek ON, Yardimci Y (1997) FFT Algorithm IEEE Signal Process Mag 60–64Google Scholar
  15. 15.
    Gonzalez RC, Woods RE (1992) Digital image processing. Pearson, Prentice-Hall, New JerseyGoogle Scholar
  16. 16.
    Kawamata M, Imakubo J, Higuchi T (1994) Optimal design method of 2-D IIR digital filters based on a simple genetic algorithm. Int Conf. Image Process:780–784Google Scholar
  17. 17.
    Kennedy J, Eberhart RC (1995) Particle swarm optimization. Neural Netw, 1995 Proc, IEEE Int Conf 4:1942–1948.  https://doi.org/10.1109/ICNN.1995.488968 Google Scholar
  18. 18.
    Kockanat S, Karaboga N (2015) The design approaches of two-dimensional digital filters based on metaheuristic optimization algorithms: a review of the literature. Artif Intell Rev 44:265–287.  https://doi.org/10.1007/s10462-014-9427-1 CrossRefGoogle Scholar
  19. 19.
    Kumar M, Aggarwal A, Rawat TK (2016) Bat algorithm: application to adaptive infinite impulse response system identification. Arab J Sci Eng 41:3587–3604.  https://doi.org/10.1007/s13369-016-2222-3 CrossRefGoogle Scholar
  20. 20.
    Lu HC, Tzeng ST (2000) Design of two-dimensional FIR digital filters for sampling structure conversion by genetic algorithm approach. Signal Process 80:1445–1458.  https://doi.org/10.1016/S0165-1684(00)00048-7 CrossRefGoogle Scholar
  21. 21.
    Lv C, Yan S, Cheng G et al (2016) Design of two-dimensional IIR digital filters by using a novel hybrid optimization algorithm. 1267–1281. doi:  https://doi.org/10.1007/s11045-016-0397-0
  22. 22.
    Mladenov VM, Mastorakis N (1994) Design of two-Dimensional Recursive Filters by using neural networks. IEEE Trans Neural Netw 5:2–6Google Scholar
  23. 23.
    Mostajabi T, Poshtan J, Mostajabi Z (2013) IIR model identification via evolutionary algorithms. Artif Intell Rev 44:87–101.  https://doi.org/10.1007/s10462-013-9403-1 CrossRefGoogle Scholar
  24. 24.
    Nair SS, Rana KPS, Kumar V, Chawla A (2017) Efficient modeling of linear discrete filters using ant lion optimizer. Circuits, Syst Signal Process 36:1535–1568.  https://doi.org/10.1007/s00034-016-0370-z CrossRefGoogle Scholar
  25. 25.
    Oppenheim AV, Schafer RW, Buck JR (1999) Discrete-time Signal Processing, 2nd edn. Prentice-Hall, Englewood Cliffs, New JerseyGoogle Scholar
  26. 26.
    Pham DT, Koç E (2010) Design of a two-dimensional Recursive Filter Using the bees algorithm. Int J Autom Comput 7:399–402.  https://doi.org/10.1007/s11633-010-0520-x CrossRefGoogle Scholar
  27. 27.
    Proakis JG, Monolakis DG (1996) Digital signal processing: principles, algorithms, and applications. Prentice-Hall, New JerseyGoogle Scholar
  28. 28.
    Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci (Ny) 179:2232–2248.  https://doi.org/10.1016/j.ins.2009.03.004 CrossRefzbMATHGoogle Scholar
  29. 29.
    Sajjad M, Nasir M, Muhammad K, Khan S, Jan Z, Sangaiah AK, Elhoseny M, Baik SW (2018) Raspberry Pi assisted face recognition framework for enhanced law-enforcement services in smart cities. Future Gen Comput Syst, Elsevier.  https://doi.org/10.1016/j.future.2017.11.013
  30. 30.
    Shehab A, Elhoseny M, Muhammad K, Sangaiah AK, Yang P, Huang H, Hou G Secure and robust fragile watermarking scheme for medical images. IEEE Access 6(1):10269–10278.  https://doi.org/10.1109/ACCESS.2018.2799240
  31. 31.
    Stewart J (2001) Intermediate electromagnetic theory. World Scientific, SingaporeCrossRefzbMATHGoogle Scholar
  32. 32.
    Tsai J-T, Ho W-H, Chou J-H (2009) Design of two-dimensional IIR digital structure-specified filters by using an improved genetic algorithm. Expert Syst Appl 36:6928–6934.  https://doi.org/10.1016/j.eswa.2008.08.065 CrossRefGoogle Scholar
  33. 33.
    Tzafestas SG (1986) Multidimensional systems: Techniques and applications. DekkerGoogle Scholar
  34. 34.
    Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1:67–82.  https://doi.org/10.1109/4235.585893 CrossRefGoogle Scholar
  35. 35.
    Yang Y, Yang B, Niu M (2017) Adaptive infinite impulse response system identification using opposition based hybrid coral reefs optimization algorithm. Appl Intell 1–18. doi:  https://doi.org/10.1007/s10489-017-1034-9
  36. 36.
    Yuan X, Elhoseny M, El-Minir H, Riad A (2017) A genetic algorithm-based, dynamic clustering method towards improved wsn longevity. J Netw Syst Manag 25(1):21–46.  https://doi.org/10.1007/s10922-016-9379-7 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mohamed Elhoseny
    • 1
  • Diego Oliva
    • 2
  • Valentín Osuna-Enciso
    • 3
  • Aboul Ella Hassanien
    • 4
  • M. Gunasekaran
    • 5
  1. 1.Faculty of Computer and InformationMansoura UniversityMansouraEgypt
  2. 2.Universidad de Guadalajara, CUCEIGuadalajaraMexico
  3. 3.Universidad de GuadalajaraTonaláMexico
  4. 4.Faculty of Computer and InformationCairo UniversityCairoEgypt
  5. 5.VIT UniversityVelloreIndia

Personalised recommendations