Advertisement

Multimedia Tools and Applications

, Volume 77, Issue 17, pp 22367–22384 | Cite as

Mesh motion scale invariant feature and collaborative learning for visual recognition

  • Yue Ming
  • Jiakun Shi
Article
  • 47 Downloads

Abstract

Visual recognition has been gradually played important roles in many fields. An effective feature descriptor, with higher discrimination and higher descriptiveness for the different visual recognition tasks, is a challenging issue. In this paper, we propose a novel feature, called mesh motion scale invariant feature description, to facilitate the different visual task description and balance discrimination and efficiency. Then, a hierarchical collaborative feature learning model for multi-visual tasks in complex scenes is presented for obtaining the recognition results. Four large databases, FRGC, CASIA, BU-3DFE and 3D Online Action, are introduced to the performance comparison and the experimental results show a better performance for face recognition, expression recognition and activity recognition based on our proposed method.

Keywords

Visual recognition Mesh motion scale invariant feature description Hierarchical collaborative feature learning 

Notes

Acknowledgements

The work presented in this paper was supported by the National Natural Science Foundation of China (Grants No. NSFC-61402046), Fund for the Doctoral Program of Higher Education of China (Grants No. 20120005110002), National Great Science Specific Project (Grants No. 2011ZX0300200301, 2012ZX03005008) and Beijing Municipal Commission of Education Build Together Project.

References

  1. 1.
    Ahonen T, Hadid A, Pietikainen M (2006) Face description with local binary patterns: application to face recognition. IEEE Trans Pattern Anal Mach Intell 28 (12):2037–2041CrossRefzbMATHGoogle Scholar
  2. 2.
    Alain G, Bengio Y, Rifai S (2012) Universit de Montral, regularized auto-encoders estimate local statistics. arXiv:1211.4246
  3. 3.
    Andrew G, Arora R, Bilmes J, Livescu K (2013) Deep canonical correlation analysis. Int Conf Mach Learn:1247–1255Google Scholar
  4. 4.
    Batrinca L, Mana N, Lepri B, Sebe N, Pianesi F (2016) Multimodal personality recognition in collaborative goal-oriented tasks. IEEE Trans Multimed 18 (4):659–672CrossRefGoogle Scholar
  5. 5.
    Bay H, Ess A, Tuytelaars T, Gool LJV (2008) Speeded up robust features. Comput Vis Image Underst 110(3):346–359CrossRefGoogle Scholar
  6. 6.
    Bellotto N, Benfold B, Harland H, Nagal H-H, Pirla N, Reid L, Sommerlade E, Zhao C (2012) Cognitive visual tracking and camera control. Compter Vision and Image Understanding 116(2):457–471CrossRefGoogle Scholar
  7. 7.
    Bengio Y, Courville A, Vincent P (2012) Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828CrossRefGoogle Scholar
  8. 8.
    Bengio Y, Courville A, Vincent P (2012) Representation learning: A Review and New Perspectives, ArxivGoogle Scholar
  9. 9.
    Chen M, Hauptmann A (2009) MoSIFT: Recognizing human actions in surveillance videos. Technical ReportGoogle Scholar
  10. 10.
    Cheung W, Hamarneh G (2009) n-SIFT: n-dimensional scale invariant feature transform. IEEE Trans Image Process 18(1):2012–2021MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chiu L-C, Chang T-S, Chen J-Y, Chang NY-C (2013) Fast SIFT design for real-time visual feature extraction. IEEE Trans Image Process 22(8):3158–3167CrossRefGoogle Scholar
  12. 12.
    Dardas NH, Georganas ND (2011) Real-time hand gesture detection and recognition using bag-of-features and support vector machine techniques. IEEE Trans Instrum Meas 60(11):3592–3607CrossRefGoogle Scholar
  13. 13.
    Di Huang M, Ardabilian Y, Chen L (2012) 3D face recognition using eLBP based facial description and feature hybrid matching. IEEE Trans Inf Forensics Secur 7(5):1551–1565CrossRefGoogle Scholar
  14. 14.
    Drom T, Keller Y (2012) Scale-invariant Features for 3D mesh model. IEEE Trans Image Process 21(5):2758–2769MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Duan L, Xu D, Tsang IW-H, Luo J (2012) Visual event recognition in videos by learning from web data. IEEE Trans Pattern Anal Mach Intell 34(9):1667–1680CrossRefGoogle Scholar
  16. 16.
    Evangelopoulos G, Zlantintsi A, Alexandros P, Maragos P, Rapantzikos K, Skoumas G, Avrithis Y (2013) Multimodal saliency and fusion for movie summarization based on aural, visual and texual attention. IEEE Trans Multimed 15 (7):1553–1568CrossRefGoogle Scholar
  17. 17.
    Gao Z, Li S, Zhu Y et al (2017) Collaborative sparse representation learning model for RGBD action recognition. J Vis Commun Image Represent.  https://doi.org/10.1016/j.jvcir.2017.03.014
  18. 18.
    Gao Z, Zhang H, Xu GP, Xue YB, Hauptmannc AG (2015) Multi-view discriminative and structured dictionary learning with group sparsity for human action recognition. Signal Process 112:83–97CrossRefGoogle Scholar
  19. 19.
    Gao Z, Zhang L-F, Chen M-Y, Hauptmann A, Zhang H, Cai A (2014) Enhanced and hierarchical structure algorithm for data imbalance problem in semantic extraction under massive video dataset. Multimed Tool Appl 68(3):641–657CrossRefGoogle Scholar
  20. 20.
    Goodfellow I, Courville A, Bengio Y (2012) Large-scale feature learning with spike-and-slab sparse coding. In: ICMLGoogle Scholar
  21. 21.
    Goodfellow I, Courville A, Bengio Y (2012) Large-scale feature learning with spike-and-slab sparse coding. In: ICMLGoogle Scholar
  22. 22.
    Huang L, Ma B, Shen J, He H, Shao L, Porikli F (2017) Visual tracking by sampling in part space. IEEE Trans Image Process 26(12):5800–5810MathSciNetCrossRefGoogle Scholar
  23. 23.
    Hussain SU, Napoleon T, Jurie F (2012) Face recognition using local quantized patterns. In: British machive vision conference, pp 11–26Google Scholar
  24. 24.
    Kakadiaris IA, Passalis G, Toderici G, Murtuza N, Lu Y, Karampatziakis N, Theoharis T (2007) 3D face recognition in the presence of facial expressions: an annotated deformable model approach. IEEE Trans Pattern Anal Mach Intell 6 (4):640–664CrossRefGoogle Scholar
  25. 25.
    Kavukcuoglu K, Ranzato M, LeCun Y (2010) Fast inference in sparse coding algorithms with applications to object recognition. arXiv:1010.3467
  26. 26.
    Kim D, Kim K, Kim JY, Lee S, Lee SJ, Yoo HJ (2009) GOPS Object recognition processor based on a memory-centric NoC. IEEE Trans Very Large Scale Integr Syst 17(3):370–382CrossRefGoogle Scholar
  27. 27.
    Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks NIPSGoogle Scholar
  28. 28.
    Lei Z, Pietikainen M, Li SZ (2014) Learning discriminant face descriptor. IEEE Trans Pattern Anal Mach Intell 36(2):289–302CrossRefGoogle Scholar
  29. 29.
    Li X, Ruan Q, Ming Y (2012) A remarkable standard for estimating the performance of 3D facial expression features. Neurocomputing 82(1):99–108CrossRefGoogle Scholar
  30. 30.
    Liu A-A, Su Y-T, Nie W-Z, Kankanhalli M (2017) Hierarchical clustering multi-task learning for joint human action grouping and recognition. IEEE Trans Pattern Anal Mach Intell 39(1):102–114CrossRefGoogle Scholar
  31. 31.
    Lo TWR, Siebert JP (2009) Local feature extraction and matching on range images: 2.5D SIFT. Comput Vis Image Underst 113(12):1235–1250. Special issue on 3D Representation for Object and Scene RecognitionCrossRefGoogle Scholar
  32. 32.
    Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110CrossRefGoogle Scholar
  33. 33.
    Lu J, Liong VE, Zhou X, Zhou J (2015) Learning compact binary face descriptor for face recognition. IEEE Trans Pattern Anal Mach Intell 37(10):2041–2056CrossRefGoogle Scholar
  34. 34.
    Maugey T, Frossard P (2016) Interactive multiview video system with low complexity 2D look around at decoder. IEEE Trans Multimedia 15(5):1070–1082CrossRefGoogle Scholar
  35. 35.
    Mian AS, Bennamoun M, Owens R (2007) An efficient multimodal 2D-3D hybrid approach to automatic face recognition. IEEE Trans Pattern Anal Mach Intell 36(11):1927–1943CrossRefGoogle Scholar
  36. 36.
    Ming Y (2015) Robust regional bounding spherical descriptor for 3D face recognition and emotion analysis. Image Vision Comput 35(3):14–22CrossRefGoogle Scholar
  37. 37.
    Ming Y, Ruan Q, Hauptmann AG (2012) Activity recognition from RGB-d camera with 3D local spatio-temporal features. In: Proceedings of IEEE International Conference on Multimedia and Expo, pp 344–349Google Scholar
  38. 38.
    Ngiam J, Khosla A, Kim M, Nam J, Lee H, Ng AY (2011) Multimodal deep learning. In: International Conference on Machine Learning, pp 689–696Google Scholar
  39. 39.
    Osada K, Furuya T, Ohbuchi R (2008) Shrec08 entry: local volumetric features for 3d model retrieval. In: SMI08: International Conference on Shape Modeling and Applications. IEEE Computer Society, pp 245–246Google Scholar
  40. 40.
    Panagakis Y, Nicolaou MA, Zafeiriou S, Pantic M (2016) Robust correlated and individual component analysis. IEEE Trans Pattern Anal Mach Intell 38(8):1665–1678CrossRefGoogle Scholar
  41. 41.
    Peng Y, Huang X, Qi J Cross-media Shared Representation by Hierarchical Learning with Multiple Deep Networks, 2016, International Joint Conference on Artificial Intelligence, pp 3846–3853Google Scholar
  42. 42.
    Phillips P, Flynn P, Scruggs T, Bowyer K, Chang J, Hoffman K, Marques J, Min J, Worek W (2005) Overview of the face recognition grand challenge. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp 947–954Google Scholar
  43. 43.
    Phillips PJ, Moon H, Rizvi S, Rauss PJ et al (2000) The feret evaluation methodology for face recognition algorithms. IEEE Trans Pattern Anal Mach Intell 22 (10):1090–1104CrossRefGoogle Scholar
  44. 44.
    Song X, Jiang S, Herranz L (2017) Multi-scale multi-feature context modeling for scene recognition in the semantic manifold. IEEE Trans Image Process 26(6):2721–2735MathSciNetCrossRefGoogle Scholar
  45. 45.
    Srivastava N, Salakhutdinov R (2012) Multimodal learning with deep boltzmann machines. Advan Neural Inform Process Syst:2222–2230Google Scholar
  46. 46.
    Tariq U, Huang TS Feature and fusion for expression recognition - A comparative analysis, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp 146–152Google Scholar
  47. 47.
    Terriberry T, French L, Helmsen J (2008) GPU accelerating speeded-up robust features. In: 4th International Symposium on 3D Data Processing, Visualization, Transmission, pp 1–8Google Scholar
  48. 48.
    Wan J, Ruan Q, Li W, Deng S (2013) One-shot learning gesture recognition from RGB-d data using bag of features. J Mach Learn Res 14(1):2549–2582Google Scholar
  49. 49.
    Wu K Study on co-evolutionary method for image understanding, Hefei University of Technology PhD ThesisGoogle Scholar
  50. 50.
    Yang Y, Ma Z, Nie F, Chang X, Hauptmann AG (2015) Multi-class active learning by uncertainty sampling with diversity maximization. Int J Comput Vis 113(2):113–127MathSciNetCrossRefGoogle Scholar
  51. 51.
    Yu G, Liu Z, Yuan J, Cremers D, Reid I, Saito H, Yang MH (2014) Discriminative orderlet mining for real-time recognition of human-object interaction. In: Computer vision, 12th springer international asian conference, ACCV14, Taiwan, pp 50–65Google Scholar
  52. 52.
    Zhang B, Gao Y, Zhao S, Liu J (2010) Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans Image Process 19(2):533–544MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Zhang B, Yang Y, Chen C, Yang L, Han J, Shao L (2017) Action reocgnition using 3D histograms of texture and a multi-class boosting classifier. IEEE Trans Image Process 26(10):4648–4660MathSciNetCrossRefGoogle Scholar
  54. 54.
    Zhang H, Shang X, Luan H, Wang M, Chua T-S (2016) Learning from collective intelligence: Feature learning using social images and tags. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), vol 13Google Scholar
  55. 55.
    Zhang H, Yang Y, Luan H, Yan S, Chua T-S Start from Scratch: towards Automatically Identifying, Modeling, and Naming Visual Attributes, 2014, ACM International Conference on Multimedia, pp 187–196Google Scholar
  56. 56.
    Zhang Q, Chen Y, Zhang Y, Xu Y (2008) SIFT Implementation and optimization for multi-core systems. In: IEEE International Symposium on Parallel Distributed Processing, pp 1–8Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic EngineeringBeijing University of Posts and TelecommunicationsBeijingPeople’s Republic of China
  2. 2.School of Electronic EngineeringBeijing University of Posts and TelecommunicationsBeijingPeople’s Republic of China

Personalised recommendations