Advertisement

Multimedia Tools and Applications

, Volume 77, Issue 22, pp 29303–29322 | Cite as

Video logo removal detection based on sparse representation

  • Xiao Jin
  • Yuting Su
  • Liang Zou
  • Chengqian Zhang
  • Peiguang Jing
  • Xuemeng Song
Article
  • 93 Downloads

Abstract

With the popularity of multimedia editing tools, more and more forged multimedia content appeared on the network. Thus, the legal authorities need novel techniques to distinguish copyright infringements from a large number of videos on the Internet. Since logo removal is a common editing operation during unauthorized reproduction, logo removal detection is often equivalent to copyright infringements detection to some extent. In this paper, we proposed a video forensics framework for logo removal detection. Our framework mainly contains two stages: the removal traces detection and the removal region location. In the first stage, we use sparse representation to show the difference between the tampered areas and the original areas in sparsity. In the second stage, spatial priors and temporal correlations are used to refine the location of the removal regions. Finally, a spatiotemporal suspected region can obviously show the edited regions. The proposed method is validated on our video logo removal dataset by extensive experiments, showing promising results.

Keywords

Video forensics Video inpainting detection Sparse representation Logo removal operation 

Notes

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (61572356 and 61303208) and the Tianjin Research Program of Application Foundation and Advanced Technology (15JCQNJC41600) and a grant from the China Scholarship Council (201706250187).

References

  1. 1.
    Aharon M, Elad M, Bruckstein A (2006) K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54 (11):4311–4322CrossRefGoogle Scholar
  2. 2.
    Akbari M, Hu X, Nie L, Chua TS (2016) From tweets to wellness: wellness event detection from twitter streams. In: Proceedings of AAAI, pp 87–93Google Scholar
  3. 3.
    Bestagini P, Milani S, Tagliasacchi M, Tubaro S (2013) Local tampering detection in video sequences. In: Proceedings of IEEE international workshop on multimedia signal processing, pp 488–493Google Scholar
  4. 4.
    Bestagini P, Visentini-Scarzanella M, Tagliasacchi M, Dragotti PL, Tubaro S (2013) Video recapture detection based on ghosting artifact analysis. In: Proceedings of IEEE international conference on image processing, pp 4457–4461Google Scholar
  5. 5.
    Chen J, Han Y, Cao X, Tian Q (2013) Object coding on the semantic graph for scene classification. In: Proceedings of ACM international conference on multimedia, pp 493–496Google Scholar
  6. 6.
    Chen S, Tan S, Li B, Huang J (2016) Automatic detection of object-based forgery in advanced video. IEEE Trans Circuits Syst Video Technol 26(11):2138–2151CrossRefGoogle Scholar
  7. 7.
    Costa FDO, Lameri S, Bestagini P, Dias Z, Rocha A, Tagliasacchi M, Tubaro S (2015) Phylogeny reconstruction for misaligned and compressed video sequences. In: Proceedings of IEEE international conference on image processing, pp 301–305Google Scholar
  8. 8.
    Costa FDO, Lameri S, Bestagini P, Dias Z, Tubaro S, Rocha A (2016) Hash-based frame selection for video phylogeny. In: Proceedings of IEEE international workshop on information forensics and security, pp 1–6Google Scholar
  9. 9.
    D’Avino D, Cozzolino D, Poggi G, Verdoliva L (2017) Autoencoder with recurrent neural networks for video forgery detection. Electronic Imaging 2017(7):92–99CrossRefGoogle Scholar
  10. 10.
    Dias Z, Rocha A, Goldenstein S (2011) Video phylogeny: recovering near-duplicate video relationships. In: Proceedings of IEEE international workshop on information forensics and security, pp 1–6Google Scholar
  11. 11.
    Elad M (2010) Sparse and redundant representations: from theory to applications in signal and image processing, 1st edn. Springer, New YorkCrossRefGoogle Scholar
  12. 12.
    Ellis JG, Jou B, Chang SF (2014) Why we watch the news: a dataset for exploring sentiment in broadcast video news. In: Proceedings of ACM international conference on multimodal interaction, pp 104–111Google Scholar
  13. 13.
    Feng C, Xu Z, Zhang W, Xu Y (2014) Automatic location of frame deletion point for digital video forensics. In: Proceedings of ACM workshop on information hiding and multimedia security, pp 171–179Google Scholar
  14. 14.
    Feng F, Nie L, Wang X, Hong R, Chua TS (2017) Computational social indicators: a case study of chinese university ranking. In: Proceedings of international ACM SIGIR conference on research and development in information retrieval, pp 455–464Google Scholar
  15. 15.
    Gironi A, Fontani M, Bianchi T, Piva A, Barni M (2014) A video forensic technique for detecting frame deletion and insertion. In: Proceedings of IEEE international conference on acoustics, speech and signal processing, pp 6226–6230Google Scholar
  16. 16.
    Han Y, Wu F, Tao D, Shao J, Zhuang Y, Jiang J (2012) Sparse unsupervised dimensionality reduction for multiple view data. IEEE Trans Circuits Syst Video Technol 22(10):1485–1496CrossRefGoogle Scholar
  17. 17.
    Han Y, Wei X, Cao X, Yang Y, Zhou X (2014) Augmenting image descriptions using structured prediction output. IEEE Trans Multimedia 16(6):1665–1676CrossRefGoogle Scholar
  18. 18.
    Han Y, Yang Y, Ma Z, Shen H, Sebe N, Zhou X (2014) Image attribute adaptation. IEEE Trans Multimedia 16(4):1115–1126CrossRefGoogle Scholar
  19. 19.
    Han Y, Yang Y, Yan Y, Ma Z, Sebe N, Zhou X (2015) Semisupervised feature selection via spline regression for video semantic recognition. IEEE Transactions on Neural Networks and Learning Systems 26(2):252–264MathSciNetCrossRefGoogle Scholar
  20. 20.
    He P, Jiang X, Sun T, Wang S (2016) Double compression detection based on local motion vector field analysis in static-background videos. J Vis Commun Image Represent 35:55–66CrossRefGoogle Scholar
  21. 21.
    He P, Jiang X, Sun T, Wang S (2017) Detection of double compression in MPEG-4 videos based on block artifact measurement. Neurocomputing 228:84–96CrossRefGoogle Scholar
  22. 22.
    Hsu CC, Hung TY, Lin CW, Hsu CT (2008) Video forgery detection using correlation of noise residue. In: Proceedings of IEEE workshop on multimedia signal processing, pp 170–174Google Scholar
  23. 23.
    Jiang YG, Jiang Y, Wang J (2014) VCDB: a large-scale database for partial copy detection in videos. In: Proceedings of European conference on computer vision, pp 357–371Google Scholar
  24. 24.
    Jing P, Su Y, Nie L, Gu H (2017) Predicting image memorability through adaptive transfer learning from external sources. IEEE Trans Multimedia 19(5):1050–1062CrossRefGoogle Scholar
  25. 25.
    Kobayashi M, Okabe T, Sato Y (2010) Detecting forgery from static-scene video based on inconsistency in noise level functions. IEEE Trans Inf Forensics Secur 5(4):883–892CrossRefGoogle Scholar
  26. 26.
    Labartino D, Bianchi T, De Rosa A, Fontani M, Vazquez-Padin D, Piva A, Barni M (2013) Localization of forgeries in MPEG-2 video through GOP size and DQ analysis. In: Proceedings of IEEE international workshop on multimedia signal processing, pp 494–499Google Scholar
  27. 27.
    Lee JW, Lee MJ, Oh TW, Ryu SJ, Lee HK (2010) Screenshot identification using combing artifact from interlaced video. In: Proceedings of ACM workshop on multimedia and security, pp 49–54Google Scholar
  28. 28.
    Lin CS, Tsay JJ (2014) A passive approach for effective detection and localization of region-level video forgery with spatio-temporal coherence analysis. Digit Investig 11(2):120–140CrossRefGoogle Scholar
  29. 29.
    Lin H, Jia J, Nie L, Shen G, Chua TS (2016) What does social media say about your stress?. In: Proceedings of international joint conferences on artificial intelligence, pp 3775–3781Google Scholar
  30. 30.
    Liu Y, Zhang L, Nie L, Yan Y, Rosenblum DS (2016) Fortune teller: predicting your career path. In: Proceedings of AAAI, pp 201–207Google Scholar
  31. 31.
    Mondaini N, Caldelli R, Piva A, Barni M, Cappellini V (2007) Detection of malevolent changes in digital video for forensic applications. In: Proceedings of SPIE conference on security, steganography, and watermarking of multimedia contents, p 65050Google Scholar
  32. 32.
    Nie L, Hong R, Zhang L, Xia Y, Tao D, Sebe N (2016) Perceptual attributes optimization for multivideo summarization. IEEE Transactions on Cybernetics 46(12):2991–3003CrossRefGoogle Scholar
  33. 33.
    Nie L, Zhang L, Wang M, Hong R, Farseev A, Chua TS (2017) Learning user attributes via mobile social multimedia analytics. ACM Trans Intell Syst Technol 8(3):36CrossRefGoogle Scholar
  34. 34.
    Song X, Ming ZY, Nie L, Zhao YL, Chua TS (2016) Volunteerism tendency prediction via harvesting multiple social networks. ACM Trans Inf Syst 34(2):10CrossRefGoogle Scholar
  35. 35.
    Sun T, Wang W, Jiang X (2012) Exposing video forgeries by detecting MPEG double compression. In: Proceedings of IEEE international conference on acoustics, speech and signal processing, pp 1389–1392Google Scholar
  36. 36.
    Visentini-Scarzanella M, Dragotti PL (2013) Modelling radial distortion chains for video recapture detection. In: Proceedings of IEEE international workshop on multimedia signal processing, pp 412–417Google Scholar
  37. 37.
    Wang W, Farid H (2006) Exposing digital forgeries in video by detecting double MPEG compression. In: Proceedings of ACM workshop on multimedia and security, pp 37–47Google Scholar
  38. 38.
    Wang W, Farid H (2007) Exposing digital forgeries in video by detecting duplication. In: Proceedings of ACM workshop on multimedia and security, pp 35–42Google Scholar
  39. 39.
    Wang W, Farid H (2009) Exposing digital forgeries in video by detecting double quantization. In: Proceedings of ACM workshop on multimedia and security, pp 39–48Google Scholar
  40. 40.
    Wang J, Liu Q, Duan L, Lu H, Xu C (2007) Automatic TV logo detection, tracking and removal in broadcast video. In: Proceedings of international conference on multimedia modeling, pp 63–72Google Scholar
  41. 41.
    Wang X, Zhao YL, Nie L, Gao Y, Nie W, Zha ZJ, Chua TS (2015) Semantic-based location recommendation with multimodal venue semantics. IEEE Trans Multimedia 17(3):409–419CrossRefGoogle Scholar
  42. 42.
    Wu Y, Jiang X, Sun T, Wang W (2014) Exposing video inter-frame forgery based on velocity field consistency. In: Proceedings of IEEE international conference on acoustics, speech and signal processing, pp 2674–2678Google Scholar
  43. 43.
    Yan W, Wang J, Kankanhalli MS (2005) Automatic video logo detection and removal. Multimedia Systems 10(5):379–391CrossRefGoogle Scholar
  44. 44.
    Zhang J, Su Y (2009) Detecting logo-removal forgery by inconsistencies of blur. In: Proceedings of IEEE international conference on industrial mechatronics and automation, pp 32–36Google Scholar
  45. 45.
    Zhang D, Nie L, Luan H, Tan KL, Chua TS, Shen HT (2017) Compact indexing and judicious searching for Billion-Scale microblog retrieval. ACM Trans Inf Syst 35(3):27Google Scholar
  46. 46.
    Zhu L, Shen J, Liu X, Xie L, Nie L (2016) Learning compact visual representation with canonical views for robust mobile landmark search. In: Proceedings of international joint conferences on artificial intelligence, pp 3959–3965Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xiao Jin
    • 1
    • 2
  • Yuting Su
    • 1
  • Liang Zou
    • 2
  • Chengqian Zhang
    • 3
  • Peiguang Jing
    • 1
  • Xuemeng Song
    • 4
  1. 1.School of Electrical and Information EngineeringTianjin UniversityTianjinChina
  2. 2.Department of Electrical and Computer EngineeringUniversity of British ColumbiaVancouverCanada
  3. 3.School of Electrical Engineering and InformationSouthwest Petroleum UniversityChengduChina
  4. 4.School of Computer Science and TechnologyShandong UniversityJinanChina

Personalised recommendations