Random permutation Maxout transform for cancellable facial template protection

Article
  • 16 Downloads

Abstract

In this paper, we propose a salting based two-factor cancelable biometrics construct, dubbed Random Permutation Maxout (RPM) transform for facial template protection. The RPM transform is inspired from a member of rank-based Locality Sensitive Hashing (LSH), namely Winner Takes All hashing, which was devised for data retrieval. With externally generated user-specific parameters, RPM converts a continuous facial feature vector into a max ranked indices vector as cancellable template. Since the features magnitude of facial features have been transformed to the discrete index form, the resulting template is robust against noises and it is strongly concealed from the adversary learning on the original facial features. This lays a strong promise on non-invertibility requirement The LSH theory compliance RPM is shown minimal performance deterioration after transform. The experimental results render reasonable accuracy performance on benchmark AR and FERET datasets. We also perform several rigorous security, privacy, revocability and unlinkability analyses, which are required for cancellable biometrics techniques.

Keywords

Template protection Face recognition Cancellable biometrics Locality sensitive hashing 

Notes

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NO. 2016R1A2B4011656).

References

  1. 1.
    Bartal Y, Recht B, Schulman LJ (2011) Dimensionality reduction: beyond the Johnson-Lindenstrauss bound, in the twenty-second annual ACM-SIAM symposium on Discrete Algorithms, pp 868–887Google Scholar
  2. 2.
    Cho S, Teoh ABJ (2017) Face template protection via random permutation Maxout transform. In: Proceedings of the 2017 international conference on biometrics engineering and application, New York, NY, USA, pp 21–27Google Scholar
  3. 3.
    Datar M, Immorlica N, Indyk P, Mirrokni VS (2004) Locality-sensitive hashing scheme based on P-stable distributions. In: Proceedings of the Twentieth Annual Symposium on Computational Geometry, New York, NY, USA, pp 253–262Google Scholar
  4. 4.
    Diaconis P, Graham R (1977) Spearman’s footrule as a measure of disarray. J R Stat Soc Ser B Methodol 39(2):262–268MathSciNetMATHGoogle Scholar
  5. 5.
    Gómez-Barrero M, Rathgeb C, Galbally Herrero J, Fiérrez J, Busch CH 2014 Protected facial biometric templates based on local gabor patterns and adaptive bloom filters. 22nd international conference on pattern recognition, ICPR. IEEE, 4483–4488Google Scholar
  6. 6.
    Gomez-Barrero M, Rathgeb C, Galbally J, Busch C, Fierrez J (2016) Unlinkable and irreversible biometric template protection based on bloom filters. Inf Sci 370:18–32MathSciNetCrossRefGoogle Scholar
  7. 7.
    Huang D, Shan C, Ardabilian M, Wang Y, Chen L (2011) Local binary patterns and its application to facial image analysis: a survey. IEEE Trans Syst Man Cybern C Appl Rev 99:1–17Google Scholar
  8. 8.
    Indyk P, Motwani R (1998) Approximate nearest neighbors: towards removing the curse of dimensionality. Proceedings of 30th symposium on theory of ComputingGoogle Scholar
  9. 9.
    ISO/IEC JTC1 SC27 Security Techniques, ISO/IEC 24745:2011. Information technology - security techniques - biometric information protection, ISO, 2011Google Scholar
  10. 10.
    Jain AK (2007) Technology: biometric recognition. Nature 449:38–49CrossRefGoogle Scholar
  11. 11.
    Jain AK, Nandakumar K (2008) A. Biometric template security. EURASIP J Adv Signal Process 2008:579416CrossRefGoogle Scholar
  12. 12.
    Jeong M, Lee C, Kim J, Choi J-Y, Toh K-A, Kim J (2006) Changeable biometrics for appearance based face recognition”. 2006 biometrics symposium: special session on research at the biometric consortium conferenceGoogle Scholar
  13. 13.
    Johnson WB, Lindenstrauss J (1982) Extensions of Lipschitz mappings into a Hilbert space. Conference in Modern Analysis and Probability, Contemporary Mathematics 26, Providence, RI: American Mathematical Society, p. 189–206Google Scholar
  14. 14.
    Kang J, Nyang D, Lee K (2014) Two-factor face authentication using matrix permutation transformation and a user password. Inf Sci 269(10):1–20MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kaur H, Khanna P (2017) Cancelable biometrics using Hadamard transform and friendly random projections. In: Proceedings of international conference on computer vision and image processing, springer, Singapore, pp 47–57Google Scholar
  16. 16.
    Kim Y, Toh K-A (2007) A Method to Enhance Face Biometric Security. Biometrics: Theory, Applications, and Systems, 2007. BTAS 2007. First IEEE International Conference on Biometrics: Theory, Applications, and SystemsGoogle Scholar
  17. 17.
    Leng L, Jin Teoh AB, Li M, Khan MK (2014) Analysis of correlation of 2DPalmHash code and orientation range suitable for transposition. Neurocomputing 131:377–387CrossRefGoogle Scholar
  18. 18.
    Leng L, Teoh ABJ, Li M, Khan MK (2015) Orientation range of transposition for vertical correlation suppression of 2DPalmPhasor code. Multimed Tools Appl 74(24):11683–11701Google Scholar
  19. 19.
    Li K, Qi G, Ye J, Hua KA (2016) Linear subspace ranking hashing for cross-modal retrieval. IEEE Trans Pattern Anal Mach Intell 39(9):1825–1838CrossRefGoogle Scholar
  20. 20.
    CY Low and Andrew B.J. Teoh (2018) Multi-fold Gabor, PCA and ICA filter convolution descriptor for face recognition. IEEE Trans Circuits Syst Video Technol.  https://doi.org/10.1109/TCSVT.2017.2761829
  21. 21.
    Leng L, Andrew BJ, Teoh ML (2017) Simplified 2DPalmHash code for secure Palmprint verification. Multimed Tools Appl 76(6):8373–8398Google Scholar
  22. 22.
    Maiorana E, Campisi P, Fierrez J, Ortega-Garcia J, Neri A (2010) Cancelable templates for sequence-based biometrics with application to on-line signature recognition. IEEE Trans Syst Man Cybern Syst Hum 40(3):525–538CrossRefGoogle Scholar
  23. 23.
    Marcolin F, Vezzetti E (2017) Novel descriptors for geometrical 3D face analysis. Multimed Tools Appl 76(12):13805–13834CrossRefGoogle Scholar
  24. 24.
    Martinez AM (1998) The AR face database CVC Tech Rep, vol 24Google Scholar
  25. 25.
    Nagar A, Nandakumar K, Jain AK(2010) Biometric template transformation: a security analysis. Proceedings of SPIE, vol 7541, no. 1, p 75410O–75410O–15, Feb 2010Google Scholar
  26. 26.
    Nakamura I, Tonomura Y, Kiya H (2015) Unitary transform-based template protection and its properties. In: 2015 23rd European signal processing conference (EUSIPCO), pp 2421–2425Google Scholar
  27. 27.
    Nandakumar K, Jain AK (2015) Biometric template protection schemes: bridging the performance gap between theory and practice. IEEE Signal Process Mag 32(5):88–100CrossRefGoogle Scholar
  28. 28.
    Ng CJ, Teoh ABJ, Low CY (2016) DCT based region log-tied rank covariance matrices for face recognition.” 41th international conference on acoustics, speech, and signal processing (ICASSP 2016), Shanghai, ChinaGoogle Scholar
  29. 29.
    Ntantogian C, Malliaros S, Xenakis C (Jul. 2015) Gaithashing: a two-factor authentication scheme based on gait features. Comput Secur 52:17–32CrossRefGoogle Scholar
  30. 30.
    Oh B-S, Toh K-A, Choi K, Beng Jin Teoh A, Kim J (Sep. 2012) Extraction and fusion of partial face features for cancelable identity verification. Pattern Recogn 45(9):3288–3303CrossRefGoogle Scholar
  31. 31.
    Pandey RK, Govindaraju V (2015) Secure face template generation via local region hashing. In: 2015 international conference on biometrics (ICB), pp 299–304Google Scholar
  32. 32.
    Patel VM, Ratha NK, Chellappa R (2015) Cancelable biometrics: a review. IEEE Signal Process Mag 32(5):54–65CrossRefGoogle Scholar
  33. 33.
    Paul PP, Gavrilova M (2012) Multimodal biometric approach for cancelable face template generation. SPIE Defense, Security, and Sensing 84070H–84070HGoogle Scholar
  34. 34.
    Phillips PJ, Wechsler H, Huang J, Rauss PJ (1998) The FERET database and evaluation procedure for face-recognition algorithms. Image Vis Comput 16(5):295–306CrossRefGoogle Scholar
  35. 35.
    Pillai JK, Patel VM, Chellappa R, Ratha NK (2011) Secure and robust Iris recognition using random projections and sparse representations. IEEE Trans Pattern Anal Mach Intell 33(9):1877–1893CrossRefGoogle Scholar
  36. 36.
    Ratha NK, Chikkerur S, Connell JH, Bolle RM (2007) Generating cancelable fingerprint templates. IEEE Trans Pattern Anal Mach Intell 29(4):561–572CrossRefGoogle Scholar
  37. 37.
    Rathgeb C, Uhl A (2011) A survey on biometric cryptosystems and cancelable biometrics. EURASIP J Inf Secur 2011(1):3CrossRefGoogle Scholar
  38. 38.
    Saito Y, Nakamura I, Shiota S, Kiya H (2016) An efficient random unitary matrix for biometric template protection. In: 2016 joint 8th international conference on soft computing and intelligent systems (SCIS) and 17th international symposium on advanced intelligent systems (ISIS), pp 366–370Google Scholar
  39. 39.
    Savvides M, Vijaya Kumar BVK, Khosla PK (2004) Cancelable biometric filters for face recognition. Proceedings of the 17th international conference on pattern recognition, 2004. ICPRGoogle Scholar
  40. 40.
    Spearman C (1904) The proof and measurement of association between two things. Am J Psychol 15(1):72–101CrossRefGoogle Scholar
  41. 41.
    Sutcu Y, Sencar HT, Memon N (2005) A secure biometric authentication scheme based on robust hashing. MM&Sec '05 Proceedings of the 7th workshop on Multimedia and securityGoogle Scholar
  42. 42.
    Teoh ABJ, Yuang CT (Oct. 2007) Cancelable biometrics realization with multispace random projections. IEEE Trans Syst Man Cybern B Cybern 37(5):1096–1106CrossRefGoogle Scholar
  43. 43.
    Teoh ABJ, Goh A, Ngo DCL (Dec. 2006) Random multispace quantization as an analytic mechanism for BioHashing of biometric and random identity inputs. IEEE Trans Pattern Anal Mach Intell 28(12):1892–1901CrossRefGoogle Scholar
  44. 44.
    Teoh A, Toh K-A, Yip W (2007) 2^N discretisation of BioPhasor in cancellable biometrics. In: Lee S-W, Li S (eds) Advances in biometrics, vol 4642. Springer Berlin, Heidelberg, pp 435–444CrossRefGoogle Scholar
  45. 45.
    Teoh ABJ, Kuan YW, Lee S (Jun. 2008) Cancellable biometrics and annotations on BioHash. Pattern Recogn 41(6):2034–2044CrossRefMATHGoogle Scholar
  46. 46.
    Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86CrossRefGoogle Scholar
  47. 47.
    Vezzetti E, Marcolin F, Tornincasa S, Ulrich L, Dagnes N (2017) 3D geometry-based automatic landmark localization in presence of facial occlusions. Multimed Tools Appl.  https://doi.org/10.1007/s11042-017-5025-y
  48. 48.
    Wang Y, Hatzinakos D (2011) On random transformations for changeable face verification. IEEE Trans Syst Man Cybern B Cybern 41(3):840–854CrossRefGoogle Scholar
  49. 49.
    Wang Y, Plataniotis KN (2010) An analysis of random projection for changeable and privacy-preserving biometric verification. IEEE Trans Syst Man Cybern B Cybern 40(5):1280–1293CrossRefGoogle Scholar
  50. 50.
    Wang S, Deng G, Hu J (Jan. 2017) A partial Hadamard transform approach to the design of cancelable fingerprint templates containing binary biometric representations. Pattern Recogn 61:447–458CrossRefGoogle Scholar
  51. 51.
    Y. Wen, K. Zhang, Li Z, Qiao Y, (2016) A discriminative feature learning approach for deep face recognition. In: Computer Vision – ECCV 2016, pp 499–515Google Scholar
  52. 52.
    Yagnik J, Strelow D, Ross DA, Lin R-S (2011) The power of comparative reasoning. In: IEEE International Conference on Computer Vision, pp 2431–2438Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electrical and Electronic Engineering, College of EngineeringYonsei UniversitySeoulSouth Korea

Personalised recommendations