Advertisement

Multimedia Tools and Applications

, Volume 77, Issue 20, pp 27301–27335 | Cite as

Multi-resolution extreme learning machine-based side information estimation in distributed video coding

  • Bodhisattva DashEmail author
  • Suvendu Rup
  • Anjali Mohapatra
  • Banshidhar Majhi
  • M. N. S. Swamy
Article
  • 123 Downloads

Abstract

Context: Encoding of video frames in a traditional video coding architecture involves exhaustive computations due to the motion estimation (ME) task. Hence, it requires a considerable amount of computing aid, battery power, and resource memory. These codecs are not effective and reliable for applications like surveillance systems, wireless sensor networks, wireless camcorders, having scarcity in the availability of resources and computing ability. Therefore, in such scenarios, distributed video coding (DVC) represents a viable solution for power-constrained hand-held devices. DVC empowers the adaptability in distributing the complexity between the encoder and the decoder. Objective: Like any other building block, the decoder driven side information (SI) generation module plays a key role in a DVC codec. The efficacy of a DVC codec firmly relies on the quality of the SI generated at the decoder. SI is considered to be the facsimile of the original Wyner-Ziv (WZ) frame. Hence, the superior the quality of SI, improved is the efficiency of the codec. The primary objective of the present work is to enhance the quality of the SI frame so that the overall performance of the DVC is improved. To achieve this objective, this article deals with a hybrid SI generation scheme utilizing the principles of discrete wavelet transform (DWT) and extreme learning machine (ELM) algorithm in a transform domain-based DVC framework. Results: Exhaustive simulations have been carried out for some standard video sequences with the proposed and benchmark schemes. The proposed scheme is evaluated with respect to different performance metrics such as rate-distortion (RD), SI peak-signal-to-noise-ratio (PSNR) vs frame number, number of parity requests per SI frame, and so on. Experimental results and its analyses corroborate that the performance of the proposed technique surpasses as that of the benchmark schemes.

Keywords

Distributed video coding (DVC) Transform domain wyner-ziv video coding (TDWZ) Discrete wavelet transform (DWT) Side information (SI) Extreme machine learning (ELM) Structural similarity index (SSIM) Rate-distortion (RD) 

References

  1. 1.
    Aaron A, Rane SD, Setton E, Girod B et al (2004) Transform-domain wyner-ziv codec for video. In: Proceedings of SPIE, vol 5308, pp 520–528Google Scholar
  2. 2.
    Abou-Elailah A, Dufaux F, Farah J, Cagnazzo M, Pesquet-Popescu B (2013) Fusion of global and local motion estimation for distributed video coding. IEEE Trans Circuits Syst Video Technol 23(1):158–172CrossRefGoogle Scholar
  3. 3.
    Artigas X, Ascenso J, Dalai M, Klomp S, Kubasov D, Ouaret M (2007) The discover codec: architecture, techniques and evaluation. In: Picture Coding Symposium (PCS” 07), MMSPL-CONF-2009-014Google Scholar
  4. 4.
    Ascenso J, Brites C, Pereira F (2006) Content adaptive wyner-ziv video coding driven by motion activity. In: Image processing, 2006 IEEE International Conference on, IEEE, pp605-608Google Scholar
  5. 5.
    Ascenso J, Brites C, Pereira F (2010) A flexible side information generation framework for distributed video coding. Multimedia Tools and Applications 48(3):381–409CrossRefGoogle Scholar
  6. 6.
    Brites C, Ascenso J, Pedro JQ, Pereira F (2008) Evaluating a feedback channel based transform domain wyner–ziv video codec. Signal Process Image Commun 23(4):269–297CrossRefGoogle Scholar
  7. 7.
    Ciuti G, Menciassi A, Dario P (2011) Capsule endoscopy: from current achievements to open challenges. IEEE Rev Biomed Eng 4:59–72CrossRefGoogle Scholar
  8. 8.
    Dash B, Rup S, Mohapatra A, Majhi B, Swamy M (2017) Decoder driven side information generation using ensemble of mlp networks for distributed video coding. Multimedia Tools and Applications pp1–30Google Scholar
  9. 9.
    Deligiannis N, Verbist F, Slowack J, Rvd Walle, Schelkens P, Munteanu A (2014) Progressively refined wyner-ziv video coding for visual sensors. ACM Transactions on Sensor Networks (TOSN) 10(2):21CrossRefGoogle Scholar
  10. 10.
    DISCOVER-Project ((accessed May 11, 2017)) Discover project page. http://www.img.lx.it.pt/discover/home.html
  11. 11.
    Dufaux F, Gao W, Tubaro S, Vetro A (2010) Distributed video coding: trends and perspectives. EURASIP Journal on Image and Video Processing 2009(1):508,167Google Scholar
  12. 12.
    El-Dahshan ESA, Hosny T, Salem ABM (2010) Hybrid intelligent techniques for mri brain images classification. Digital Signal Process 20(2):433–441CrossRefGoogle Scholar
  13. 13.
    Girod B, Aaron AM, Rane S, Rebollo-Monedero D (2005) Distributed video coding. Proc IEEE 93(1):71–83CrossRefGoogle Scholar
  14. 14.
    Gurav P, Patil G (2016) Full-reference video quality assessment using structural similarity (SSIM) index. J Electr Commun Sys 1(2)Google Scholar
  15. 15.
    Huang GB (2003) Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Trans Neural Netw 14(2):274–281CrossRefGoogle Scholar
  16. 16.
    Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In: Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on, IEEE, vol 2, pp 985–990Google Scholar
  17. 17.
    Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501CrossRefGoogle Scholar
  18. 18.
    Huang GB, Wang DH, Lan Y (2011) Extreme learning machines: a survey. Int J Mach Learn Cybern 2(2):107–122CrossRefGoogle Scholar
  19. 19.
    Huang X, Rakêt LL, Van Luong H, Nielsen M, Lauze F et al. (2011) Multi-hypothesis transform domain wyner-ziv video coding including optical flow. In: Multimedia Signal Processing (MMSP), 2011 IEEE 13th International Workshop on, IEEE, pp 1–6Google Scholar
  20. 20.
    Jia Y, Wang Y, Song R, Li J (2015) Decoder side information generation techniques in wyner-ziv video coding: a review. Multimedia Tools and Applications 74(6):1777–1803CrossRefGoogle Scholar
  21. 21.
    Kubasov D, Nayak J, Guillemot C (2007) Optimal reconstruction in wyner-ziv video coding with multiple side information. In: Multimedia Signal Processing, 2007. MMSP 2007. IEEE 9th Workshop on, IEEE, pp 183–186Google Scholar
  22. 22.
    Li R, Liu H, Chen J, Gan Z (2016) Wavelet pyramid based multi-resolution bilateral motion estimation for frame rate up-conversion. IEICE Trans Info Sys 99 (1):208–218CrossRefGoogle Scholar
  23. 23.
    Liu W, Dong L, Zeng W (2010) Motion refinement based progressive side-information estimation for wyner-ziv video coding. IEEE Trans Circuits Syst Video Technol 20(12):1863–1875CrossRefGoogle Scholar
  24. 24.
    Mallat S, Hwang WL (1992) Singularity detection and processing with wavelets. IEEE Trans Inf Theory 38(2):617–643MathSciNetCrossRefGoogle Scholar
  25. 25.
    Mallat S G (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693CrossRefGoogle Scholar
  26. 26.
    Mallt S (1989) Multifrequency channel decomposition of image and wavelet modals. IEEE Trans, Acoust, Speech, Signal Process 37:2091–2110CrossRefGoogle Scholar
  27. 27.
    Martins R, Brites C, Ascenso J, Pereira F (2009) Refining side information for improved transform domain wyner-ziv video coding. IEEE Trans Circuits Syst Video Technol 19(9):1327–1341CrossRefGoogle Scholar
  28. 28.
    Martins R, Brites C, Ascenso J, Pereira F (2010) Statistical motion learning for improved transform domain wyner–ziv video coding. IET image processing 4(1):28–41CrossRefGoogle Scholar
  29. 29.
    Ortega JM (1987) Matrix theory. the university series in mathematicsGoogle Scholar
  30. 30.
    Pereira F, Brites C, Ascenso J (2009) Distributed video coding: basics, codecs and performance. Distributed Source Coding pp 189–245Google Scholar
  31. 31.
    Petrazzuoli G, Cagnazzo M, Pesquet-Popescu B (2010) High order motion interpolation for side information improvement in dvc. In: Acoustics speech and signal processing (ICASSP), 2010 IEEE International Conference on, IEEE, pp 2342–2345Google Scholar
  32. 32.
    Puri R, Majumdar A, Ramchandran K (2007) Prism: a video coding paradigm with motion estimation at the decoder. IEEE Trans. Image Process. 16(10):2436–2448MathSciNetCrossRefGoogle Scholar
  33. 33.
    Qing L, Zeng W (2014) Context-adaptive modeling for wavelet-domain distributed video coding. IEEE MultiMedia 21(4):84–93CrossRefGoogle Scholar
  34. 34.
    Rencher AC (2003) Methods of multivariate analysis, vol 492. John Wiley & SonsGoogle Scholar
  35. 35.
    Rup S, Majhi B (2013) A mixed framework for transform domain wyner–ziv video coding. Optik-International Journal for Light and Electron Optics 124(21):4929–4938CrossRefGoogle Scholar
  36. 36.
    Rup S, Majhi B, Padhy S (2014) An improved side information generation for distributed video coding. AEU-International Journal of Electronics and Communications 68(3):201–209CrossRefGoogle Scholar
  37. 37.
    Said A, Pearlman WA (1996) A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans Circuits Syst Video Technol 6(3):243–250CrossRefGoogle Scholar
  38. 38.
    Shapiro JM (1993) Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans Signal Process 41(12):3445–3462CrossRefGoogle Scholar
  39. 39.
    Slepian D, Wolf J (1973) Noiseless coding of correlated information sources. IEEE Trans Inf Theory 19(4):471–480MathSciNetCrossRefGoogle Scholar
  40. 40.
    Tagliasacchi M, Tubaro S, Sarti A (2006) On the modeling of motion in wyner-ziv video coding. In: Image processing, 2006 IEEE International Conference on, IEEE, pp 593-596Google Scholar
  41. 41.
    Taieb MH, Chouinard JY, Wang D (2013) Spatial correlation-based side information refinement for distributed video coding. EURASIP J Adv Signal Process 2013(1):168CrossRefGoogle Scholar
  42. 42.
    Thao NTH, Tien VH, Van Xiem H, Duong DT et al (2016) Side information creation using adaptive block size for distributed video coding. In: Advanced technologies for communications (ATC), 2016 International Conference on, IEEE, pp 339–343Google Scholar
  43. 43.
    Van Luong H, Raket LL, Huang X, Forchhammer S (2012) Side information and noise learning for distributed video coding using optical flow and clustering. IEEE Trans Image Process 21(12):4782–4796MathSciNetCrossRefGoogle Scholar
  44. 44.
    Van Luong H, Raket LL, Forchhammer S (2014) Re-estimation of motion and reconstruction for distributed video coding. IEEE Trans Image Process 23(7):2804–2819MathSciNetCrossRefGoogle Scholar
  45. 45.
    Varodayan D, Chen D, Flierl M, Girod B (2008) Wyner–ziv coding of video with unsupervised motion vector learning. Signal Process Image Commun 23(5):369–378CrossRefGoogle Scholar
  46. 46.
    Vetterli M, Herley C (1992) Wavelets and filter banks: Theory and design. IEEE Trans Signal Process 40(9):2207–2232CrossRefGoogle Scholar
  47. 47.
    Wiegand T, Sullivan GJ, Bjontegaard G, Luthra A (2003) Overview of the H.264/AVC video coding standard. IEEE Trans Circuits Syst Video Technol 13(7):560–576CrossRefGoogle Scholar
  48. 48.
    Wyner A, Ziv J (1976) The rate-distortion function for source coding with side information at the decoder. IEEE Trans Inf Theory 22(1):1–10MathSciNetCrossRefGoogle Scholar
  49. 49.
    Yan C, Zhang Y, Xu J, Dai F, Li L, Dai Q, Wu F (2014a) A highly parallel framework for HEVC coding unit partitioning tree decision on many-core processors. IEEE Signal Process Lett 21(5):573–576CrossRefGoogle Scholar
  50. 50.
    Yan C, Zhang Y, Xu J, Dai F, Zhang J, Dai Q, Wu F (2014b) Efficient parallel framework for HEVC motion estimation on many-core processors. IEEE Trans Circuits Syst Video Technol 24(12):2077–2089CrossRefGoogle Scholar
  51. 51.
    Zhang Y, Zhao D, Liu H, Li Y, Ma S, Gao W (2012) Side information generation with auto regressive model for low-delay distributed video coding. J Vis Commun Image Represent 23(1):229–236CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Bodhisattva Dash
    • 1
    Email author
  • Suvendu Rup
    • 1
  • Anjali Mohapatra
    • 1
  • Banshidhar Majhi
    • 2
  • M. N. S. Swamy
    • 3
  1. 1.Image and Video Processing Laboratory, Department of Computer Science and EngineeringInternational Institute of Information TechnologyOdishaIndia
  2. 2.Pattern Recognition Research Laboratory, Department of Computer Science and EngineeringNational Institute of TechnologyOdishaIndia
  3. 3.Department of Electrical and Computer EngineeringConcordia UniversityMontrealCanada

Personalised recommendations