Advertisement

Multimedia Tools and Applications

, Volume 77, Issue 20, pp 26239–26257 | Cite as

Natural image deblurring based on L0-regularization and kernel shape optimization

  • Fengjun Zhang
  • Wei Lu
  • Hongmei Liu
  • Fei XueEmail author
Article

Abstract

The goal of blind image deblurring is to estimate the blur kernel and restore the sharp latent image based on an input blur image. This paper proposes a novel blind image deblurring algorithm based on L0-regularization and kernel shape optimization. Firstly, the proposed objective function of the optimization model is formulated with L0-norm terms of the gradient and intensity of kernels, which results to good sparsity and less noise in the obtained kernel. Then, the coarse-to-fine iterative framework is adopted to estimate reliable salient image structures implicitly, which can reduce computation and accelerate convergence. Finally, the kernel shape is optimized by weighting method, which enables the obtained kernel closer to the ground-truth. Experimental results on public bench mark datasets demonstrate that restored images are clear with less ring-artifacts.

Keywords

Blind motion deblurring L0-regularization Alternate iteration Kernel shape optimization 

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. U1736118), the Natural Science Foundation of Guangdong (No. 2016A030313350), the Special Funds for Science and Technology Development of Guangdong (No. 2016KZ010103), the Key Project of Scientific Research Plan of Guangzhou (No. 201804020068), the Fundamental Research Funds for the Central Universities (No. 16lgjc83 and No. 17lgjc45).

References

  1. 1.
    Cai JF, Ji H, Liu C, Shen Z (2012) Framelet-based blind motion deblurring from a single image. IEEE Trans Image Process A Publ IEEE Signal Process Soc 21(2):562–572MathSciNetzbMATHGoogle Scholar
  2. 2.
    Cho S, Lee S (2009) Fast motion deblurring. ACM Trans Graph 28(5):1–8CrossRefGoogle Scholar
  3. 3.
    Fergus R, Singh B, Hertzmann A, Roweis ST, Freeman WT (2006) Removing camera shake from a single photograph. ACM Trans Graph 25(25):787–794CrossRefGoogle Scholar
  4. 4.
    Hirsch M, Schuler CJ, Harmeling S, Schölkopf B (2011) Blind deconvolution using a normalized sparsity measure. In: International conference on computer vision (ICCV). IEEE, Barcelona, pp 463–470Google Scholar
  5. 5.
    Hu Z, Yang MH (2015) Learning good regions to deblur images. Int J Comput Vis 115(3):345–362MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hu Z, Cho S, Wang J, Yang MH (2014) Deblurring low-light images with light streaks. In: IEEE conference on computer vision and pattern recognition, pp 3382–3389Google Scholar
  7. 7.
    Jiang X, Yao H, Zhao S (2017) Text image deblurring via two-tone prior. Neurocomputing 242:1–14CrossRefGoogle Scholar
  8. 8.
    Köhler R, Hirsch M, Mohler B, Schölkopf B, Harmeling S (2012) Recording and playback of camera shake: benchmarking blind deconvolution with a real-world database. In: European conference on computer vision. Springer, Firenze, pp 27-40CrossRefGoogle Scholar
  9. 9.
    Krishnan D, Tay T, Fergus R (2011) Blind deconvolution using a normalized sparsity measure. In: IEEE conference on computer vision and pattern recognition. IEEE Computer Society, Colorado, pp 233-240Google Scholar
  10. 10.
    Kundur D, Hatzinakos D (1996) Blind image deconvolution. IEEE Signal Process Mag 13(3):43–64CrossRefGoogle Scholar
  11. 11.
    Lam L, Lee SW, Suen CY (1992) Thinning methodologies-a comprehensive survey. IEEE Trans Pattern Anal Mach Intell 14(9):869–885CrossRefGoogle Scholar
  12. 12.
    Levin A, Weiss Y, Durand F, Freeman WT (2011) Efficient marginal likelihood optimization in blind deconvolution. In: IEEE conference on computer vision and pattern recognition. IEEE Computer Society, Colorado, pp 2657–2664Google Scholar
  13. 13.
    Levin A, Weiss Y, Durand F, Freeman WT (2011) Understanding blind deconvolution algorithms. IEEE Trans Pattern Anal Mach Intell 33(12):2354–2367CrossRefGoogle Scholar
  14. 14.
    Li J, Lu W (2016) Blind image motion deblurring with l0-regularized priors. J Vis Commun Image Represent 40:14–23CrossRefGoogle Scholar
  15. 15.
    Pan J, Liu R, Su Z, Gu X (2012) Kernel estimation from salient structure for robust motion deblurring. Signal Process Image Commun 28(9):1156–1170CrossRefGoogle Scholar
  16. 16.
    Pan J, Hu Z, Su Z, Yang M (2014) Deblurring text images via L0-regularized intensity and gradient prior. In: IEEE conference on computer vision and pattern recognition. IEEE Computer Society, Columbus, pp 2901–2908Google Scholar
  17. 17.
    Pan J, Hu Z, Su Z, Yang MH (2014) Deblurring face images with exemplars. In: European conference on computer vision. Springer International Publishing, Zürich, pp 47–62Google Scholar
  18. 18.
    Pan J, Sun D, Pfister H, Yang MH (2016) Blind image deblurring using dark channel prior. In: IEEE con- ference on computer vision and pattern recognition. IEEE Computer Society, Las Vegas, pp 1628-1636Google Scholar
  19. 19.
    Ren W, Cao X, Pan J, Guo X, Zuo W, Yang M (2016) Image deblurring via enhanced low-rank prior. IEEE Trans Image Process 25(7):3426–3437MathSciNetCrossRefGoogle Scholar
  20. 20.
    Roth S, Black MJ (2005) Fields of experts: a framework for learning image priors. In: IEEE computer society conference on computer vision and pattern recognition. IEEE Computer Society, San Diego, pp 860–867Google Scholar
  21. 21.
    Shan Q, Jia J, Agarwala A (2008) High-quality motion deblurring from a single image. ACM Trans Graph 27(3):1–10CrossRefGoogle Scholar
  22. 22.
    Simoncelli EP (2005) Statistical modeling of photographic images. Handb Image Video Process 415(2):431–441CrossRefGoogle Scholar
  23. 23.
    Sun S, Zhao H, Li B, Hao M, LvJ (2016) Kernel estimation for robust motion deblurring of noisy and blurry images. J Electron Imaging 25(3):033,019CrossRefGoogle Scholar
  24. 24.
    Whyte O, Sivic J, Zisserman A, Ponce J (2010) Non-uniform deblurring for shaken images. IEEE, San Francisco, pp 491–498. http://www.di.ens.fr/willow/research/deblurring/ zbMATHGoogle Scholar
  25. 25.
    Xu L, Jia J (2010) Two-phase kernel estimation for robust motion deblurring. In: European conference on computer vision. Springer, Heraklion, pp 157–170CrossRefGoogle Scholar
  26. 26.
    Xu L, Lu C, Xu Y, Jia J (2011) Image smoothing via l0 gradient minimization. ACM Trans Graph 30(6):1–12Google Scholar
  27. 27.
    Xu L, Zheng S, Jia J (2013) Unnatural l0 sparse representation for natural image deblurring. In: Computer vision and pattern recognition, Oregon, pp 1107–1114Google Scholar
  28. 28.
    Yan Y, Ren W, Guo Y, Wang R, Cao X (2017) Image deblurring via extreme channels prior. In: IEEE conference on computer vision and pattern recognition. Hawaii, pp 6978–6986Google Scholar
  29. 29.
    Yuan XT, Liu X, Yan S (2012) Visual classification with multitask joint sparse representation. IEEE Trans Image Process A Publ IEEE Signal Process Soc 21 (10):4349MathSciNetCrossRefGoogle Scholar
  30. 30.
    Zhao S, Yao H, Gao Y, Ji R, Ding G (2017) Continuous probability distribution prediction of image emotions via multitask shared sparse regression. IEEE Trans Multimed 19(3):632–645CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Data and Computer Science, Guangdong Key Laboratory of Information Security TechnologySun Yat-sen UniversityGuangzhouChina
  2. 2.State Key Laboratory of Information Security, Institute of Information EngineeringChinese Academy of SciencesBeijingChina

Personalised recommendations