Advertisement

Multimedia Tools and Applications

, Volume 77, Issue 20, pp 26191–26217 | Cite as

An efficient and self-adapting colour-image encryption algorithm based on chaos and interactions among multiple layers

  • Yuling Luo
  • Ronglong Zhou
  • Junxiu LiuEmail author
  • Senhui Qiu
  • Yi Cao
Article

Abstract

In this paper, we propose an efficient and self-adapting colour-image encryption algorithm based on chaos and the interactions among multiple red, green and blue (RGB) layers. Our study uses two chaotic systems and the interactions among the multiple layers to strengthen the cryptosystem for the colour-image encryption, which can achieve better confusion and diffusion performances. In the confusion process, we use the novel Rubik’s Cube Scheme (RCS) to scramble the image. The significant advantage of this approach is that it sufficiently destroys the correlation among the different layers of colour image, which is the most important feature of the randomness for the encryption. The theoretical analysis and experimental results show that the proposed algorithm can improve the encoding efficiency, enhances the security of the cipher-text, has a large key space and high key sensitivity, and is also able to resist statistical and exhaustive attacks.

Keywords

Colour-image encryption Chaos Interaction of multiple layers Security analysis 

Notes

Acknowledgements

This research was supported by the National Natural Science Foundation of China under Grant 61661008, the Guangxi Natural Science Foundation under Grant 2017GXNSFAA198180, 2015GXNSFBA139256 and 2016GXNSFCA380017, the funding of Overseas 100 Talents Program of Guangxi Higher Education, the Research Project of Guangxi University of China under Grant KY2016YB059, Guangxi Key Lab of Multi-source Information Mining & Security under Grant MIMS15-07, the Doctoral Research Foundation of Guangxi Normal University, the grant from Guangxi Experiment Centre of Information Science, and the Innovation Project of Guangxi Graduate Education under Grant YCSZ2017055.

References

  1. 1.
    Abbas NA (2015) Image encryption based on Independent Component Analysis and Arnold’s Cat Map. Egypt Informatics J 17(1):139–146CrossRefGoogle Scholar
  2. 2.
    Abdullah AH, Enayatifar R, Lee M (2012) A hybrid genetic algorithm and chaotic function model for image encryption. AEU - Int J Electron Commun 66(10):806–816CrossRefGoogle Scholar
  3. 3.
    Asari VK, Islam MN, Kong D, Shen X (2014) Multiple-image encryption based on optical wavelet transform and multichannel fractional Fourier transform. Opt Laser Technol 57:343–349CrossRefGoogle Scholar
  4. 4.
    Bao L, Zhou Y (2015) Image encryption: Generating visually meaningful encrypted images. Inf. Sci. (Ny). 324:197–207MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Belazi A, Abd El-Latif AA, Belghith S (2016) A novel image encryption scheme based on substitution-permutation network and chaos. Signal Process 128:155–170CrossRefGoogle Scholar
  6. 6.
    Blakley GR, Borosh I (1979) Rivest-Shamir-Adleman public key cryptosystems do not always conceal messages. Comput Math with Appl 5(3):169–178MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Chai X, Chen Y, Broyde L (2015) A novel chaotic image encryption scheme using DNA sequence operations. Opt Lasers Eng 73:53–61CrossRefGoogle Scholar
  8. 8.
    Chen L, Zhao D (2005) Optical image encryption based on fractional wavelet transform. Opt Commun 254(4–6):361–367CrossRefGoogle Scholar
  9. 9.
    Chen G, Mao Y, Chui CK (2004) A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos, Solitons and Fractals 21(3):749–761MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Chen J, Zhu Z, Fu C, Zhang L, Zhang Y (2015) An efficient image encryption scheme using lookup table-based confusion and diffusion. Nonlinear Dyn. 81(3):1151–1166CrossRefGoogle Scholar
  11. 11.
    Chen J, Zhu Z, Fu C, Zhang L, Yu H (2015) Analysis and improvement of a double-image encryption scheme using pixel scrambling technique in gyrator domains. Opt Lasers Eng 66:1–9CrossRefGoogle Scholar
  12. 12.
    El Assad S, Farajallah M (2015) A new chaos-based image encryption system. Signal Process Image Commun 41:1–14Google Scholar
  13. 13.
    Enayatifar R, Abdullah AH, Isnin IF (2014) Chaos-based image encryption using a hybrid genetic algorithm and a DNA sequence. Opt Lasers Eng 56:83–93CrossRefGoogle Scholar
  14. 14.
    Gu G, Ling J (2014) Optik A fast image encryption method by using chaotic 3D cat maps. Opt - Int J Light Electron Opt 125(17):4700–4705CrossRefGoogle Scholar
  15. 15.
    Guesmi R, Farah MAB, Kachouri A, Samet M (2016) A novel chaos-based image encryption using DNA sequence operation and Secure Hash Algorithm SHA-2. Nonlinear Dyn. 83(3):1123–1136MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Han F, Zhu C (2011) An Novel Chaotic Image Encryption Algorithm based on Tangent-Delay Ellipse Reflecting Cavity Map System. Procedia Eng 23:186–191CrossRefGoogle Scholar
  17. 17.
    Khade P, Narnaware M (2012) 3D Chaotic Functions for Image Encryption. IJCSI Int J Comput Sci Issues 9(3):323–328Google Scholar
  18. 18.
    Li C, Zhang L, Ou R, Wong K, Shu S (2012) Breaking a novel colour image encryption algorithm based on chaos. Nonlinear Dyn. 70(4):2383–2388MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lian S, Sun J, Wang Z (2005) A block cipher based on a suitable use of the chaotic standard map. Chaos, Solitons and Fractals 26(1):117–129zbMATHCrossRefGoogle Scholar
  20. 20.
    Liao X, Lai S, Zhou Q (2010) A novel image encryption algorithm based on self-adaptive wave transmission. Signal Process 90(9):2714–2722zbMATHCrossRefGoogle Scholar
  21. 21.
    Liu H, Liu Y (2014) Security assessment on block-Cat-map based permutation applied to image encryption scheme. Opt Laser Technol 56:313–316CrossRefGoogle Scholar
  22. 22.
    Luo Y, Du M, Liu J (2014) A symmetrical image encryption scheme in wavelet and time domain. Commun Nonlinear Sci Numer Simul 20(2):447–460CrossRefGoogle Scholar
  23. 23.
    Luo Y, Cao L, Qiu S, Lin H, Harkin J, Liu J (2016) A chaotic map-control-based and the plain image-related cryptosystem. Nonlinear Dyn. 83(4):2293–2310MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Luo Y et al. (2017) A Chaos-based Self-adapting RGB Image Permutation Scheme, in 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, 320–325Google Scholar
  25. 25.
    Murillo-Escobar MA, Cruz-Hernández C, Abundiz-Pérez F, López-Gutiérrez RM, Acosta-Del-Campo OR (2015) A RGB image encryption algorithm based on total plain image characteristics and chaos. Signal Process 109:119–131CrossRefGoogle Scholar
  26. 26.
    Pareek NK, Patidar V, Sud KK (2011) Colour Image Encryption Scheme Based on Permutation and Substitution Techniques. in 1st International Conference on Computer Science and Information Technology 131:413–427Google Scholar
  27. 27.
    Som S, Dutta S, Singha R, Kotal A, Palit S (2015) Confusion and diffusion of color images with multiple chaotic maps and chaos-based pseudorandom binary number generator. Nonlinear Dyn. 80(1–2):615–627CrossRefGoogle Scholar
  28. 28.
    Tong X (2013) Design of an image encryption scheme based on a multiple chaotic map. Commun Nonlinear Sci Numer Simul 18(7):1725–1733MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Tong X, Liu Y, Zhang M, Xu H, Wang Z (2015) An Image Encryption Scheme Based on Hyperchaotic Rabinovich and Exponential Chaos Maps. Entropy 17(1):181–196CrossRefGoogle Scholar
  30. 30.
    Tong X, Zhang M, Wang Z, Ma J (2016) A joint color image encryption and compression scheme based on hyper-chaotic system. Nonlinear Dyn. 84(4):2333–2356CrossRefGoogle Scholar
  31. 31.
    Wang X, Jin C (2012) Image encryption using Game of Life permutation and PWLCM chaotic system. Opt Commun 285(4):412–417CrossRefGoogle Scholar
  32. 32.
    Wang X, Wang Q (2013) A novel image encryption algorithm based on dynamic S-boxes constructed by chaos. Nonlinear Dyn. 75(3):567–576CrossRefGoogle Scholar
  33. 33.
    Wang X, Zhang H (2015) A color image encryption with heterogeneous bit-permutation and correlated chaos. Opt Commun 342:51–60CrossRefGoogle Scholar
  34. 34.
    Wang X, Zhang H (2016) A novel image encryption algorithm based on genetic recombination and hyper-chaotic systems. Nonlinear Dyn 83(1–2):333–346MathSciNetCrossRefGoogle Scholar
  35. 35.
    Wang K, Pei W, Zou L, Song A, He Z (2005) On the security of 3D Cat map based symmetric image encryption scheme. Phys Lett A 343(6):432–439zbMATHCrossRefGoogle Scholar
  36. 36.
    Wang X, Teng L, Qin X (2012) A novel colour image encryption algorithm based on chaos. Signal Process 92(4):1101–1108MathSciNetCrossRefGoogle Scholar
  37. 37.
    Wang X et al (2014) Analysis and improvement of a chaos-based symmetric image encryption scheme using a bit-level permutation. Commun Nonlinear Sci Numer Simul 77(3):36–50Google Scholar
  38. 38.
    Wang Y, Quan C, Tay CJ (2015) Optical color image encryption without information disclosure using phase-truncated Fresnel transform and a random amplitude mask. Opt Commun 344:147–155CrossRefGoogle Scholar
  39. 39.
    Wang X, Zhang Y, Bao X (2015) A novel chaotic image encryption scheme using DNA sequence operations. Opt Lasers Eng 73:53–61CrossRefGoogle Scholar
  40. 40.
    Wang X, Liu L, Zhang Y (2015) A novel chaotic block image encryption algorithm based on dynamic random growth technique. Opt Lasers Eng 66:10–18CrossRefGoogle Scholar
  41. 41.
    Wang L, Song H, Liu P (2016) A novel hybrid color image encryption algorithm using two complex chaotic systems. Opt Lasers Eng 77:118–125CrossRefGoogle Scholar
  42. 42.
    Wang X, Liu C, Xu D, Liu C (2016) Image encryption scheme using chaos and simulated annealing algorithm. Nonlinear Dyn. 84(3):1417–1429MathSciNetCrossRefGoogle Scholar
  43. 43.
    Wang X, Liu C, Zhang H (2016) An effective and fast image encryption algorithm based on Chaos and interweaving of ranks. Nonlinear Dyn. 84(3):1595–1607MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Wu J, Liao X, Yang B (2017) Color image encryption based on chaotic systems and elliptic curve ElGamal scheme. Signal Process 141:109–124CrossRefGoogle Scholar
  45. 45.
    Zhang Y, Xiao D (2014) An image encryption scheme based on rotation matrix bit-level permutation and block diffusion. Commun Nonlinear Sci Numer Simul 19(1):74–82zbMATHCrossRefGoogle Scholar
  46. 46.
    Zhang W, Wong K, Yu H, Zhu Z (2012) An image encryption scheme using lightweight bit-level confusion and cascade cross circular diffusion. Opt Commun 285(9):2343–2354CrossRefGoogle Scholar
  47. 47.
    Zhang W, Yu H, Zhu Z (2015) Color image encryption based on paired interpermuting planes. Opt Commun 338:199–208CrossRefGoogle Scholar
  48. 48.
    Zhang W, Yu H, Zhao Y, Zhu Z (2016) Image encryption based on three-dimensional bit matrix permutation. Signal Process 118:36–50CrossRefGoogle Scholar
  49. 49.
    Zhang X, Fan X, Wang J, Zhao Z (2016) A chaos-based image encryption scheme using 2D rectangular transform and dependent substitution. Multimed Tools Appl 75(4):1745–1763CrossRefGoogle Scholar
  50. 50.
    Zhu Z, Zhang W, Wong K, Yu H (2011) A chaos-based symmetric image encryption scheme using a bit-level permutation. Inf Sci (Ny) 181(6):1171–1186CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Guangxi Key Lab of Multi-Source Information Mining and Security, Faculty of Electronic EngineeringGuangxi Normal UniversityGuilinChina
  2. 2.Guangxi Experiment Centre of Information ScienceGuilinChina
  3. 3.Department of Business Transformation and Sustainable Enterprise, Surrey Business School, University of SurreySurreyUK

Personalised recommendations