Advertisement

Multimedia Tools and Applications

, Volume 77, Issue 19, pp 25761–25797 | Cite as

Context based image segmentation using antlion optimization and sine cosine algorithm

  • Diego Oliva
  • Salvador Hinojosa
  • Mohamed Abd Elaziz
  • Noé Ortega-Sánchez
Article

Abstract

Multilevel thresholding (MTH) is one of the most commonly used approaches to perform segmentation on images. However, as most methods are based on the histogram of the image to be segmented, MTH methods only consider the occurrence frequency of certain intensity level disregarding all spatial information. Contextual information can help to enhance the quality of the segmented image as it considers not only the value of the pixel but also its vicinity. The energy curve was designed to bring spatial information into a curve with the same properties as the histogram. In this paper, two recently proposed Evolutionary Computational Algorithms (ECAs) are coupled with two classical thresholding criteria to perform MTH over the energy curve. The selected ECAs are the Antlion Optimizer (ALO) and the Sine Cosine Algorithm (SCA). The proposed methods are evaluated intensively regarding quality, and a statistical analysis is presented to compare the results of the algorithms against similar approaches. Experimental evidence encourages the use ALO for MTH while it concludes that SCA does not outperform other ECAs form the state-of-the-art.

Keywords

Antlion Optimization Sine Cosine Algorithm, Multilevel Thresholding Energy Curve 

Notes

Acknowledgements

The first author acknowledges to Mexican Government for partially supporting this research under the program for New Full Time Professors 2017 of PRODEP. The authors second and fourth acknowledge to CONACYT for the grants 298283 and 234148, respectively.

Supplementary material

11042_2018_5815_MOESM1_ESM.docx (12.3 mb)
ESM 1 (DOCX 12567 kb)

References

  1. 1.
    Agrawal S, Panda R, Bhuyan S, Panigrahi BK (2013) Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm. Swarm Evol Comput 11:16–30.  https://doi.org/10.1016/j.swevo.2013.02.001 CrossRefGoogle Scholar
  2. 2.
    Akay B (2013) A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding. Appl Soft Comput J 13:3066–3091.  https://doi.org/10.1016/j.asoc.2012.03.072 CrossRefGoogle Scholar
  3. 3.
    Ali M, Siarry P, Pant M (2012) An efficient Differential Evolution based algorithm for solving multi-objective optimization problems. Eur J Oper Res 217:404–416.  https://doi.org/10.1016/j.ejor.2011.09.025 MathSciNetzbMATHGoogle Scholar
  4. 4.
    Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Comput Struct 169:1–12.  https://doi.org/10.1016/j.compstruc.2016.03.001 CrossRefGoogle Scholar
  5. 5.
    Bhandari AK, Kumar A, Chaudhary S, Singh GK (2016) A novel color image multilevel thresholding based segmentation using nature inspired optimization algorithms. Expert Syst Appl 63:112–133.  https://doi.org/10.1016/j.eswa.2016.06.044 CrossRefGoogle Scholar
  6. 6.
    Cheng HD, Jiang XH, Wang J (2002) Color image segmentation based on homogram thresholding and region merging. Pattern Recogn 35:373–393.  https://doi.org/10.1016/S0031-3203(01)00054-1 CrossRefzbMATHGoogle Scholar
  7. 7.
    Cuevas E, Zaldivar D, Pérez-Cisneros M (2010) A novel multi-threshold segmentation approach based on differential evolution optimization. Expert Syst Appl 37:5265–5271.  https://doi.org/10.1016/j.eswa.2010.01.013 CrossRefGoogle Scholar
  8. 8.
    David G (1989) Genetic Algorithms in Search, Optimization, and Machine Learning, 1st edn. Addison-Wesley, BostonzbMATHGoogle Scholar
  9. 9.
    Dehshibi MM, Sourizaei M, Fazlali M et al (2017) A hybrid bio-inspired learning algorithm for image segmentation using multilevel thresholding. Multimed Tools Appl.  https://doi.org/10.1007/s11042-016-3891-3
  10. 10.
    Dorigo M, Di Caro G (1999) Ant colony optimization: a new meta-heuristic. Proc 1999 Congr Evol Comput (Cat No 99TH8406) 2:1470–1477.  https://doi.org/10.1109/CEC.1999.782657 CrossRefGoogle Scholar
  11. 11.
    Dorigo M, Gambardella LM (1996) Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem. System 1:1–24Google Scholar
  12. 12.
    Dorigo M, Maniezzo V, Colorni A (1996) The ant systems: optimization by a colony of cooperative agents. IEEE Trans Man Mach Cybern B 26Google Scholar
  13. 13.
    El Aziz MA, Ewees AA, Hassanien AE (2017) Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation. Expert Syst Appl 83:242–256.  https://doi.org/10.1016/j.eswa.2017.04.023 CrossRefGoogle Scholar
  14. 14.
    Gao H, Xu W, Sun J, Tang Y (2010) Multilevel thresholding for image segmentation through an improved quantum-behaved particle swarm algorithm. IEEE Trans Instrum Meas 59:934–946.  https://doi.org/10.1109/TIM.2009.2030931 CrossRefGoogle Scholar
  15. 15.
    Gao H, Pun C-M, Kwong S (2016) An efficient image segmentation method based on a hybrid particle swarm algorithm with learning strategy. Inf Sci (Ny) 369:500–521.  https://doi.org/10.1016/j.ins.2016.07.017 MathSciNetCrossRefGoogle Scholar
  16. 16.
    García S, Molina D, Lozano M, Herrera F (2008) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization. J Heuristics 15:617–644.  https://doi.org/10.1007/s10732-008-9080-4 CrossRefzbMATHGoogle Scholar
  17. 17.
    Ghamisi P, Couceiro MS, Benediktsson JA, Ferreira NMF (2012) An efficient method for segmentation of images based on fractional calculus and natural selection. Expert Syst Appl 39:12407–12417.  https://doi.org/10.1016/j.eswa.2012.04.078 CrossRefGoogle Scholar
  18. 18.
    Ghosh S, Bruzzone L, Patra S et al (2007) A Context-Sensitive Technique for Unsupervised Change Detection Based on Hopfield-Type Neural Networks. IEEE Trans Geosci Remote Sens 45:778–789.  https://doi.org/10.1109/TGRS.2006.888861 CrossRefGoogle Scholar
  19. 19.
    Gonzalez RC, Woods RE (1992) Digital Image Processing. Pearson, Prentice-HallGoogle Scholar
  20. 20.
    Gupta E, Saxena A (2016) Grey wolf optimizer based regulator design for automatic generation control of interconnected power system. Cogent Eng.  https://doi.org/10.1080/23311916.2016.1151612
  21. 21.
    Hafez AI, Zawbaa HM, Emary E, Hassanien AE Sine Cosine Optimization Algorithm for Feature Selection 1–5Google Scholar
  22. 22.
    Hammouche K, Diaf M, Siarry P (2008) A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation. Comput Vis Image Underst 109:163–175.  https://doi.org/10.1016/j.cviu.2007.09.001 CrossRefGoogle Scholar
  23. 23.
    Hammouche K, Diaf M, Siarry P (2010) A comparative study of various meta-heuristic techniques applied to the multilevel thresholding problem. Eng Appl Artif Intell 23:676–688.  https://doi.org/10.1016/j.engappai.2009.09.011 CrossRefGoogle Scholar
  24. 24.
    Horng M-H, Liou R-J (2011) Multilevel minimum cross entropy threshold selection based on the firefly algorithm. Expert Syst Appl 38:14805–14811.  https://doi.org/10.1016/j.eswa.2011.05.069 CrossRefGoogle Scholar
  25. 25.
    Hussein WA, Sahran S, Abdullah SNHS (2016) A fast scheme for multilevel thresholding based on a modified bees algorithm. Knowledge-Based Syst 101:114–134.  https://doi.org/10.1016/j.knosys.2016.03.010 CrossRefGoogle Scholar
  26. 26.
    Kapur JN, Sahoo PK, Wong AKC (1985) A new method for gray-level picture thresholding using the entropy of the histogram. 273–285Google Scholar
  27. 27.
    Kapur JN, Sahoo PK, Wong AKC (1985) A new method for gray-level picture thresholding using the entropy of the histogram. Comput Vision Graph Image Proc 29:273–285CrossRefGoogle Scholar
  28. 28.
    Kennedy J, Eberhart RC (1995) Particle swarm optimization. Neural Networks, 1995 Proceedings. IEEE Int Conf 4:1942–1948.  https://doi.org/10.1109/ICNN.1995.488968 Google Scholar
  29. 29.
    Kumar S, Kumar P, Sharma TK, Pant M (2013) Bi-level thresholding using PSO, Artificial Bee Colony and MRLDE embedded with Otsu method. Memetic Comput 5:323–334.  https://doi.org/10.1007/s12293-013-0123-5 CrossRefGoogle Scholar
  30. 30.
    Li L, Sun L, Guo J et al (2017) Modified Discrete Grey Wolf Optimizer Algorithm for Multilevel Image Thresholding. Comput Intell Neurosci.  https://doi.org/10.1155/2017/3295769
  31. 31.
    Lin Z, Lei Z, XuanqinMou DZ (2011) FSIM : A Feature Similarity Index for Image. IEEE Trans Image Process 20:2378–2386MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Maitra M, Chatterjee A (2008) A hybrid cooperative-comprehensive learning based PSO algorithm for image segmentation using multilevel thresholding. Expert Syst Appl 34:1341–1350.  https://doi.org/10.1016/j.eswa.2007.01.002 CrossRefGoogle Scholar
  33. 33.
    Merrikh-Bayat F (2015) The runner-root algorithm: A metaheuristic for solving unimodal and multimodal optimization problems inspired by runners and roots of plants in nature. Appl Soft Comput J 33:292–303.  https://doi.org/10.1016/j.asoc.2015.04.048 CrossRefGoogle Scholar
  34. 34.
    Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98.  https://doi.org/10.1016/j.advengsoft.2015.01.010 CrossRefGoogle Scholar
  35. 35.
    Mirjalili S (2015) SCA: A Sine Cosine Algorithm for solving optimization problems. Knowledge-Based Syst 0:1–14. doi:  https://doi.org/10.1016/j.knosys.2015.12.022
  36. 36.
    Oh I-S, Lee J-S, Moon B-R (2004) Hybrid genetic algorithms for feature selection. IEEE Trans Pattern Anal Mach Intell 26:1424–1437.  https://doi.org/10.1109/TPAMI.2004.105 CrossRefGoogle Scholar
  37. 37.
    Oliva D, Cuevas E, Pajares G et al (2014) A Multilevel thresholding algorithm using electromagnetism optimization. Neurocomputing 139:357–381CrossRefGoogle Scholar
  38. 38.
    Oliva D, Osuna-Enciso V, Cuevas E et al (2015) Improving segmentation velocity using an evolutionary method. Expert Syst Appl 42:5874–5886.  https://doi.org/10.1016/j.eswa.2015.03.028 CrossRefGoogle Scholar
  39. 39.
    Oliva D, Hinojosa S, Cuevas E et al (2017) Cross entropy based thresholding for magnetic resonance brain images using Crow Search Algorithm. Expert Syst Appl 79:164–180.  https://doi.org/10.1016/j.eswa.2017.02.042 CrossRefGoogle Scholar
  40. 40.
    Otsu N (1979) A Threshold Selection Method from Gray-Level Histograms. IEEE Trans Syst Man Cybern 9:62–66.  https://doi.org/10.1109/TSMC.1979.4310076 CrossRefGoogle Scholar
  41. 41.
    Ouadfel S, Taleb-Ahmed A (2016) Social spiders optimization and flower pollination algorithm for multilevel image thresholding: A performance study. Expert Syst Appl 55:566–584.  https://doi.org/10.1016/j.eswa.2016.02.024 CrossRefGoogle Scholar
  42. 42.
    Pare S, Kumar A, Bajaj V, Singh GK (2016) A multilevel color image segmentation technique based on cuckoo search algorithm and energy curve. Appl Soft Comput J 47:76–102.  https://doi.org/10.1016/j.asoc.2016.05.040 CrossRefGoogle Scholar
  43. 43.
    Pare S, Bhandari AK, Kumar A, Singh GK (2017) An optimal color image multilevel thresholding technique using grey-level co-occurrence matrix. Expert Syst Appl 87:335–362.  https://doi.org/10.1016/j.eswa.2017.06.021 CrossRefGoogle Scholar
  44. 44.
    Patra S, Gautam R, Singla A (2014) A novel context sensitive multilevel thresholding for image segmentation. Appl Soft Comput J 23:122–127.  https://doi.org/10.1016/j.asoc.2014.06.016 CrossRefGoogle Scholar
  45. 45.
    Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intell 1:33–57.  https://doi.org/10.1007/s11721-007-0002-0 CrossRefGoogle Scholar
  46. 46.
    Sahoo P, Soltani S, Wong AK (1988) A survey of thresholding techniques. Comput Vision Graph Image Proc 41:233–260.  https://doi.org/10.1016/0734-189X(88)90022-9 CrossRefGoogle Scholar
  47. 47.
    Sezgin M, Sankur B (2004) Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging 13:146–168.  https://doi.org/10.1117/1.1631316 CrossRefGoogle Scholar
  48. 48.
    Socha K, Dorigo M (2008) Ant colony optimization for continuous domains. Eur J Oper Res 185:1155–1173.  https://doi.org/10.1016/j.ejor.2006.06.046 MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Storn R, Price K (1997) Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J Glob OptimGoogle Scholar
  50. 50.
    Suresh S, Lal S (2017) Multilevel thresholding based on Chaotic Darwinian Particle Swarm Optimization for segmentation of satellite images. Appl Soft Comput J 55:503–522.  https://doi.org/10.1016/j.asoc.2017.02.005 CrossRefGoogle Scholar
  51. 51.
    Tang K, Yuan X, Sun T et al (2011) An improved scheme for minimum cross entropy threshold selection based on genetic algorithm. Knowledge-Based Syst 24:1131–1138.  https://doi.org/10.1016/j.knosys.2011.02.013 CrossRefGoogle Scholar
  52. 52.
    Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: From error visibility to structural similarity. IEEE Trans Image Process 13:600–612.  https://doi.org/10.1109/TIP.2003.819861 CrossRefGoogle Scholar
  53. 53.
    Wilcoxon F (1945) Individual Comparisons by Ranking Methods. Biom Bull 1:80.  https://doi.org/10.2307/3001968 CrossRefGoogle Scholar
  54. 54.
    Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1:67–82.  https://doi.org/10.1109/4235.585893 CrossRefGoogle Scholar
  55. 55.
    Yamany W, Tharwat A, Hassanin MF, et al (2016) A New Multi-layer Perceptrons Trainer Based on Ant Lion Optimization Algorithm. Proc - 2015 4th Int Conf Inf Sci Ind Appl ISI 2015 40–45. doi:  https://doi.org/10.1109/ISI.2015.9
  56. 56.
    Yang X-S (2014) Cuckoo Search and Firefly Algorithm: Overview and Analysis. In: Cuckoo Search and Firefly Algorithm. Springer Berlin Heidelberg, 1–26Google Scholar
  57. 57.
    Yin P-YP (2007) Multilevel minimum cross entropy threshold selection based on particle swarm optimization. Appl Math Comput 184:503–513.  https://doi.org/10.1109/SNPD.2007.85 MathSciNetzbMATHGoogle Scholar
  58. 58.
    Zawbaa HM, Emary E, Grosan C (2016) Feature selection via chaotic antlion optimization. PLoS One 11:1–21.  https://doi.org/10.1371/journal.pone.0150652 Google Scholar
  59. 59.
    Zhang J, Li H, Tang Z et al (2014) An improved quantum-inspired genetic algorithm for image multilevel thresholding segmentation. Math Probl Eng.  https://doi.org/10.1155/2014/295402
  60. 60.
    Zheng GY, Xing ZW, Peng JP et al (2015) Multi-object extraction from topview group-housed pig images based on adaptive partitioning and multilevel thresholding segmentation. Biosyst Eng 135:54–60.  https://doi.org/10.1016/j.biosystemseng.2015.05.001 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.División de Electrónica y ComputaciónUniversidad de Guadalajara, CUCEIGuadalajaraMéxico
  2. 2.Dpto. Ingeniería del Software e Inteligencia Artificial, Facultad InformáticaUniversidad Complutense de MadridMadridSpain
  3. 3.School of Computer Science and TechnologyWuhan University of TechnologyWuhanChina
  4. 4.Department of Mathematics, Faculty of ScienceZagazig UniversityZagazigEgypt

Personalised recommendations