Advertisement

Multimedia Tools and Applications

, Volume 78, Issue 3, pp 3723–3745 | Cite as

AdaSLIC: adaptive supervoxel generation for volumetric medical images

  • Amal AmamiEmail author
  • Zouhour Ben Azouz
  • Monia Turki-Hadj Alouane
Article
  • 140 Downloads

Abstract

In the last decade, supervoxels have become a useful mid-level representation of volumetric medical images such as MRIs and CT scans. Several methods were suggested to produce uniform supervoxels, yet little has been done to generate content-sensitive over-segmentations. This is particularly beneficial to 3D medical image analysis, where sizes of anatomical structures vary largely. In this paper, we propose AdaSLIC as an adaptive supervoxel generation technique that applies to volumetric medical images. In small structures, it generates tiny supervoxels to capture the details of the image. Meanwhile, it partitions large structures into bigger supervoxels, hence leading to a sparse description. The proposed technique is an extension of the Simple Linear Iterative Clustering (SLIC) algorithm. Rather than using a regular sampling to initiate supervoxel centers, a content-sensitive initialization is performed using a Poisson-disk sampling algorithm (PDS). It relies on a map of distances to the main image contours. The size of each supervoxel depends on the distance of its center to the closest image contour. We compare our algorithm to the SLIC algorithm as well as to an extension of the DBSCAN algorithm (Density-Based Spatial Clustering of Applications with Noise). Two datasets are used for this purpose: knee MRIs and cardiovascular magnetic resonance (CMR) images. We use different metrics to assess the quality of the generated over-segmentations. Experimental results show that our algorithm achieves comparable or better boundary adherence than the state of the art algorithms while producing compact and adaptive supervoxels.

Keywords

Medical images Adaptive Supervoxels SLIC Poisson-disk sampling Big data 

Notes

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with Ethical Standards

Conflict of interests

All the authors certify that they have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

References

  1. 1.
    Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süsstrunk S (2012) SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2282CrossRefGoogle Scholar
  2. 2.
    Andres B, Koethe U, Kroeger T, Helmstaedter M, Briggman KL, Denk W, Hamprecht FA (2012) 3d segmentation of SBFSEM images of neuropil by a graphical model over supervoxel boundaries. Med Image Anal 16(4):796–805CrossRefGoogle Scholar
  3. 3.
    Bi L, Kim J, Kumar A, Wen L, Feng D, Fulham M (2017) Automatic detection and classification of regions of FDG uptake in whole-body PET-CT lymphoma studies. Comput Med Imaging Graph 60(Supplement C):3–10CrossRefGoogle Scholar
  4. 4.
    Bridson R (2007) Fast poisson disk sampling in arbitrary dimensions. In: SIGGRAPH sketches, p 22Google Scholar
  5. 5.
    Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):679–698CrossRefGoogle Scholar
  6. 6.
    Chen Z, Yuan Z, Choi YK, Liu L, Wang W (2012) Variational blue noise sampling. IEEE Trans Vis Comput Graph 18(10):1784–1796CrossRefGoogle Scholar
  7. 7.
    Conze PH, Noblet V, Rousseau F, Heitz F, de Blasi V, Memeo R, Pessaux P (2017) Scale-adaptive supervoxel-based random forests for liver tumor segmentation in dynamic contrast-enhanced CT scans. Int J CARS 12(2):223–233CrossRefGoogle Scholar
  8. 8.
    Conze PH, Tilquin F, Noblet V, Rousseau F, Heitz F, Pessaux P (2017) Hierarchical multi-scale supervoxel matching using random forests for automatic semi-dense abdominal image registration. In: IEEE 14th international symposium on biomedical imaging (ISBI), 2017. IEEEGoogle Scholar
  9. 9.
    Cook RL (1986) Stochastic sampling in computer graphics. ACM Trans Graph 5(1):51–72CrossRefGoogle Scholar
  10. 10.
    Corsini M, Cignoni P, Scopigno R (2012) Efficient and flexible sampling with blue noise properties of triangular meshes. IEEE Trans Vis Comput Graph 18 (6):914–924CrossRefGoogle Scholar
  11. 11.
    Dang K, Yuan J, Tiong HY (2013) Voxel labelling in ct images with data-driven contextual features. In: 2013 IEEE international conference on image processing, pp 680–684Google Scholar
  12. 12.
    Dunbar D, Humphreys G (2006) A spatial data structure for fast poisson-disk sample generation. ACM Trans Graph 25(3):503–508CrossRefGoogle Scholar
  13. 13.
    Ebeida MS, Mitchell SA, Patney A, Davidson AA, Owens JD (2012) A simple algorithm for maximal poisson-disk sampling in high dimensions. Comput Graph Forum 31:785–794CrossRefGoogle Scholar
  14. 14.
    Felzenszwalb PF, Huttenlocher DP (2004) Efficient graph-based image segmentation. Int J Comput Vis 59(2):167–181CrossRefGoogle Scholar
  15. 15.
    Gentsos C, Sotiropoulou CL, Nikolaidis S, Vassiliadis N (2010) Real-time canny edge detection parallel implementation for FPGAs. In: 17th IEEE international conference on electronics, circuits, and systems (ICECS), 2010. IEEE, pp 499–502Google Scholar
  16. 16.
    Grundmann M, Kwatra V, Han M, Essa I (2010) Efficient hierarchical graph-based video segmentation. In: IEEE conference on computer vision and pattern recognition (CVPR), 2010. IEEE, pp 2141–2148Google Scholar
  17. 17.
    Heimann T, Morrison BJ, Styner MA, Niethammer M, Warfield S (2010) Segmentation of knee images: a grand challenge. In: Proceedings of MICCAI workshop on medical image analysis for the clinic, pp 207–214Google Scholar
  18. 18.
    Heinrich MP, Simpson IJ, PapieŻ BW, Brady M, Schnabel JA (2016) Deformable image registration by combining uncertainty estimates from supervoxel belief propagation. Med Image Anal 27:57–71CrossRefGoogle Scholar
  19. 19.
    Hesselink WH, Roerdink JBTM (2008) Euclidean skeletons of digital image and volume data in linear time by the integer medial axis transform. IEEE Trans Pattern Anal Mach Intell 30(12):2204–2217CrossRefGoogle Scholar
  20. 20.
    Irving B, Franklin JM, PapieŻ BW, Anderson EM, Sharma RA, Gleeson FV, Brady M, Schnabel JA (2016) Pieces-of-parts for supervoxel segmentation with global context: Application to DCE-MRI tumour delineation. Med Image Anal 32:69–83CrossRefGoogle Scholar
  21. 21.
    Kanavati F, Misawa K, Fujiwara M, Mori K, Rueckert D, Glocker B (2017) Joint supervoxel classification forest for weakly-supervised organ segmentation. In: International workshop on machine learning in medical imaging. Springer, pp 79–87Google Scholar
  22. 22.
    Kanavati F, Tong T, Misawa K, Fujiwara M, Mori K, Rueckert D, Glocker B (2017) Supervoxel classification forests for estimating pairwise image correspondences. Pattern Recogn 63:561–569CrossRefGoogle Scholar
  23. 23.
    Konishi S, Yuille AL, Coughlan JM, Zhu SC (2003) Statistical edge detection: learning and evaluating edge cues. IEEE Trans Pattern Anal Mach Intell 25 (1):57–74CrossRefGoogle Scholar
  24. 24.
    Levinshtein A, Stere A, Kutulakos KN, Fleet DJ, Dickinson SJ, Siddiqi K (2009) Turbopixels: fast superpixels using geometric flows. IEEE Trans Pattern Anal Mach Intell 31(12):2290–2297CrossRefGoogle Scholar
  25. 25.
    Li Z, Chen J (2015) Superpixel segmentation using linear spectral clustering. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), pp 1356–1363Google Scholar
  26. 26.
    Liu MY, Tuzel O, Ramalingam S, Chellappa R (2011) Entropy rate superpixel segmentation. In: CVPR 2011, pp 2097–2104Google Scholar
  27. 27.
    Liu Y, Stojadinovic S, Hrycushko B, Wardak Z, Lu W, Yan Y, Jiang SB, Timmerman R, Abdulrahman R, Nedzi L et al (2016) Automatic metastatic brain tumor segmentation for stereotactic radiosurgery applications. Phys Med Biol 61 (24):8440CrossRefGoogle Scholar
  28. 28.
    Liu Y, Yu CC, Yu MJ, He Y (2016) Manifold SLIC: a fast method to compute content-sensitive superpixels. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 651–659Google Scholar
  29. 29.
    Lucchi A, Smith K, Achanta R, Knott G, Fua P (2012) Supervoxel-based segmentation of mitochondria in EM image stacks with learned shape features. IEEE Trans Med Imaging 31(2):474–486CrossRefGoogle Scholar
  30. 30.
    Machairas V, Faessel M, Cárdenas-Peña D, Chabardes T, Walter T, Decencière E (2015) Waterpixels. IEEE Trans Image Process 24(11):3707–3716MathSciNetCrossRefGoogle Scholar
  31. 31.
    Mahapatra D, Schüffler PJ, Tielbeek JA, Makanyanga JC, Stoker J, Taylor SA, Vos FM, Buhmann JM (2013) Automatic detection and segmentation of crohn’s disease tissues from abdominal MRI. IEEE Trans Med Imaging 32(12):2332–2347CrossRefGoogle Scholar
  32. 32.
    Mitchell SA, Rand A, Ebeida MS, Bajaj C (2012) Variable radii poisson-disk sampling, extended version. In: Proceedings of the 24th canadian conference on computational geometry, vol 5Google Scholar
  33. 33.
    Moore AP, Prince SJD, Warrell J, Mohammed U, Jones G (2008) Superpixel lattices. In: 2008 IEEE conference on computer vision and pattern recognition, pp 1–8Google Scholar
  34. 34.
    Ostromoukhov V (2001) A simple and efficient error-diffusion algorithm. In: Proceedings of the 28th annual conference on computer graphics and interactive techniques, SIGGRAPH ’01. ACM, New York, pp 567–572Google Scholar
  35. 35.
    Pace DF, Dalca AV, Geva T, Powell AJ, Moghari MH, Golland P (2015) Interactive whole-heart segmentation in congenital heart disease. Springer International Publishing, Cham, pp 80–88Google Scholar
  36. 36.
    Pei Y, Yi Y, Ma G, Guo Y, Chen G, Xu T, Zha H (2017) Finding dense supervoxel correspondence of cone-beam computed tomography images. In: Machine learning in medical imaging - 8th international workshop, MLMI 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 10, 2017, Proceedings, pp 114–122Google Scholar
  37. 37.
    Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629–639CrossRefGoogle Scholar
  38. 38.
    Ren X, Malik J (2003) Learning a classification model for segmentation. In: Proceedings ninth IEEE international conference on computer vision, vol 1, pp 10–17Google Scholar
  39. 39.
    Ren CY, Reid I (2011) gSLIC: a real-time implementation of SLIC superpixel segmentation. Department of Engineering Science, University of Oxford, p 6Google Scholar
  40. 40.
    Schick A, Fischer M, Stiefelhagen R (2012) Measuring and evaluating the compactness of superpixels. In: Proceedings of the 21st international conference on pattern recognition (ICPR2012), pp 930–934Google Scholar
  41. 41.
    Shen J, Du Y, Wang W, Li X (2014) Lazy random walks for superpixel segmentation. IEEE Trans Image Process 23(4):1451–1462MathSciNetCrossRefGoogle Scholar
  42. 42.
    Shen J, Hao X, Liang Z, Liu Y, Wang W, Shao L (2016) Real-time superpixel segmentation by DBSCAN clustering algorithm. IEEE Trans Image Process 25(12):5933–5942MathSciNetCrossRefGoogle Scholar
  43. 43.
    Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905CrossRefGoogle Scholar
  44. 44.
    Szmul A, Papiez BW, Bates R, Hallack A, Schnabel JA, Grau V (2016) Graph cuts-based registration revisited: a novel approach for lung image registration using supervoxels and image-guided filtering. In: 2016 IEEE conference on computer vision and pattern recognition workshops (CVPRW), pp 592–599Google Scholar
  45. 45.
    Tian Z, Liu L, Zhang Z, Xue J, Fei B (2017) A supervoxel-based segmentation method for prostate MR images. Med Phys 44(2):558–569CrossRefGoogle Scholar
  46. 46.
    Van den Bergh M, Boix X, Roig G, de Capitani B, Van Gool L (2012) Seeds: superpixels extracted via energy-driven sampling. In: European conference on computer vision. Springer, pp 13–26Google Scholar
  47. 47.
    Veksler O, Boykov Y, Mehrani P (2010) Superpixels and supervoxels in an energy optimization framework. In: European conference on computer vision. Springer, pp 211–224Google Scholar
  48. 48.
    Wang YR, Horng SJ (2004) Parallel algorithms for arbitrary dimensional euclidean distance transforms with applications on arrays with reconfigurable optical buses. IEEE Trans Syst Man Cybern B Cybern 34(1):517–532CrossRefGoogle Scholar
  49. 49.
    Wang P, Zeng G, Gan R, Wang J, Zha H (2013) Structure-sensitive superpixels via geodesic distance. Int J Comput Vis 103(1):1–21MathSciNetCrossRefGoogle Scholar
  50. 50.
    Weikersdorfer D, Gossow D, Beetz M (2012) Depth-adaptive superpixels. In: Proceedings of the 21st international conference on pattern recognition (ICPR2012), pp 2087–2090Google Scholar
  51. 51.
    White KB, Cline D, Egbert PK (2007) Poisson disk point sets by hierarchical dart throwing. In: 2007 IEEE symposium on interactive ray tracing, pp 129–132Google Scholar
  52. 52.
    Xu C, Corso JJ (2012) Evaluation of super-voxel methods for early video processing. In: 2012 IEEE conference on computer vision and pattern recognition, pp 1202–1209Google Scholar
  53. 53.
    Xu C, Corso JJ (2016) Libsvx: a supervoxel library and benchmark for early video processing. Int J Comput Vis 119(3):272–290MathSciNetCrossRefGoogle Scholar
  54. 54.
    Xu C, Whitt S, Corso JJ (2013) Flattening supervoxel hierarchies by the uniform entropy slice. In: Proceedings of the IEEE international conference on computer vision, pp 2240–2247Google Scholar
  55. 55.
    Yushkevich PA, Piven J, Cody Hazlett H, Gimpel Smith R, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ecole Nationale d’Ingénieurs de Tunis, Laboratoire de Signaux et SystèmesUniversité de Tunis El ManarTunisTunisie
  2. 2.Intitut Supérieur d’InformatiqueUniversité de Tunis El ManarTunisTunisie

Personalised recommendations