Advertisement

Multimedia Tools and Applications

, Volume 78, Issue 1, pp 125–139 | Cite as

R-Lambda model based CTU-level rate control for intra frames in HEVC

  • Peng WangEmail author
  • Cui Ni
  • Guangyuan Zhang
  • Kefeng Li
Article

Abstract

In High Efficiency Video Coding (HEVC), the coding efficiency of intra frames is much lower than inter frames. If the bits allocated to intra frames are not sufficient to improve their quality, the quality fluctuation between intra frames and their neighboring inter frames will appear. But if too many bits are allocated to intra frames, the other frames may get bits starvation, which will cause quality degradation of some other frames. We propose an R-Lambda model based CTU-level rate control to improve the reconstructed quality of intra frames with fewer bits. CTUs in intra frame are classified into three regions according to their motion vectors and complexity. The bits allocated to CTUs belong to different regions will be adjusted and the R-lambda model will be used to calculate the QPs. Experimental results demonstrate that the proposed rate control can efficiently reduce the bits cost by intra frames and suppress the quality fluctuation between intra frames and others when compared to the rate control by R-lambda model adopted in HM10.0.

Keywords

HEVC CTU-level rate control Motion vector Bit allocation 

Notes

Acknowledgements

This work was partially supported by the National Natural Science Funds of China (Grant No. 61502277) and the Natural Science Funds of Shandong Province (Grant No. ZR2015FL017).

References

  1. 1.
    Boyce JM, Ye Y, Chen J, Ramasubramonian AK (2016) Overview of SHVC: Scalable extensions of the high efficiency video coding standard. IEEE Trans Circuits Syst Video Technol 26(1):20–34CrossRefGoogle Scholar
  2. 2.
    Choi H, Nam J, Yoo J, Sim D, Bajic I (2012) Rate control based on unified RQ model for HEVC. JCTVC-H0213, JCTVC of ISO/IEC and ITU-T, 8th meeting CA, USAGoogle Scholar
  3. 3.
    Hu HM, Li B, Lin W, Sun MT (2011) A rate-control algorithm using inter-layer information for H. 264/SVC for low-delay applications. J Vis Commun Image Represent 22(6):504–515CrossRefGoogle Scholar
  4. 4.
    Hu S, Wang H, Kwong S (2012) Adaptive quantization-parameter clip scheme for smooth quality in H.264/AVC. IEEE Trans Image Process 21(4):1911–1919MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hu HM, Li B, Lin W, Li W, Sun MT (2012) Region-based rate control for H. 264/AVC for low bit-rate applications. IEEE Trans Circuits Syst Video Technol 22(11):1564–1576CrossRefGoogle Scholar
  6. 6.
    Kim I, McCann K, Sugimoto K, Bross B, Han W (2012) HM9: High Efficiency Video Coding (HEVC) Test Model 9 Encoder Description. JCTVC-K1002, JCTVC of ISO/IEC and ITU-T, Shanghai, ChinaGoogle Scholar
  7. 7.
    Lei J, Feng K, Wu M, Li S, Hou C (2014) Rate control of hierarchical B prediction structure for multiview video coding. IEEE Trans Multimedia Tools and Applications 72(1):825–842CrossRefGoogle Scholar
  8. 8.
    Li B, Li H, Li L, Zhang J (2012) Rate control by R-lambda model for HEVC. JCTVC-K0103, JCTVC of ISO/IEC and ITU-T, 11th meeting Shanghai, ChinaGoogle Scholar
  9. 9.
    Li B, Li HQ, Li L, Zhang JL (2014) λ domain rate control algorithm for high efficiency video coding. IEEE Trans Image Process 23(9):3841–3854Google Scholar
  10. 10.
    Li L, Li B, Liu D, Li HQ (2016) Lambda-Domain Rate Control Algorithm for HEVC Scalable Extension. IEEE Trans Multimedia 18(10):2023–2039CrossRefGoogle Scholar
  11. 11.
    Lin W, Panusopone K, Baylon DM, Sun MT (2010) A computation control motion estimation method for complexity-scalable video coding. IEEE Trans Circuits Syst Video Technol 20(11):1533–1543CrossRefGoogle Scholar
  12. 12.
    McCann K, Bross B, Han W, Kim I, Sugimoto K, Sulivan G (2013) High Efficiency Video Coding (HEVC) Test Model 10 (HM10) Encoder Description. JCTVC-L1002, JCTVC of ISO/IEC and ITU-T, 12th Meeting, Geneva, CHGoogle Scholar
  13. 13.
    Park S, Park J, Jeon B (2011) Report on the evaluation of HM versus JM. JCTVC-D181, JCTVC of ISO/IEC and ITU-T, Daegu, KoreaGoogle Scholar
  14. 14.
    Sanz-Rodriguez S, Schierl T (2013) A rate control algorithm for HEVC with hierarchical GOP structures. IEEE International Conference on Acoustics, Speech and Signal Processing, pp 1719-1723Google Scholar
  15. 15.
    Shao F, Jiang G, Lin W, Yu M, Dai Q (2013) Joint bit allocation and rate control for coding multi-view video plus depth based 3D video. IEEE Trans Multimedia 15(8):1843–1854CrossRefGoogle Scholar
  16. 16.
    Kwon D-K, Shen M-Y, Kuo C-CJ (2007) Rate control for H.264 video with enhanced rate and distortion models. IEEE Trans Circuits Syst Video Technol 17(5):517–529CrossRefGoogle Scholar
  17. 17.
    Shen L, Liu Z, Zhang Z (2013) A novel H.264 rate control algorithm with consideration of visual attention. IEEE Trans Multimedia Tools and Applications 63(3):709–727CrossRefGoogle Scholar
  18. 18.
    Kuo C, Shih Y, Yang S (2016) Rate control via adjustment of lagrange multiplier for video coding. IEEE Trans Circuits Syst Video Technol 26(11):2069–2078CrossRefGoogle Scholar
  19. 19.
    Si J, Ma S, Gao W (2013) Efficient bit allocation and CTU level rate control for high efficiency video coding. Picture Coding Symposium, pp 89–92Google Scholar
  20. 20.
    Sullivan GJ, Ohm J-R, Han W-J, Wiegand T (2012) Overview of the high efficiency video coding (HEVC) standard. IEEE Trans Circuits Syst Video Technol 22(12):1649–1668CrossRefGoogle Scholar
  21. 21.
    Tian L, Zhou Y, Cao X (2014) A new rate-complexity-QP algorithm (RCQA) for HEVC intra-picture rate control. IEEE Internatianal Conference on Computing, Networking and Communications, Multimedia Computing and Communicaitons SymposiumGoogle Scholar
  22. 22.
    Tsai W, Chou T (2010) Scene change aware intra-frame rate control for H.264/AVC. IEEE Trans Circuits Syst Video Technol 20(12):1882–1886CrossRefGoogle Scholar
  23. 23.
    Wang P, Zhang Y, Hu H-m, Li B. Region-classification-based flicker suppression algorithm of I-frames in HEVC. International Conference on Image Processing (ICIP 2013), 2013.9Google Scholar
  24. 24.
    Yang J, Sun Y, Zhou YM, Sun SX (2013) Incremental rate control for H.264 AVC scalable extension. IEEE Trans Multimedia Tools and Applications 64(3):581–598CrossRefGoogle Scholar
  25. 25.
    Zeng H, Yang A, Ngan KN, Wang M (2016) Perceptual sensitivity-based rate control method for high efficiency video coding. IEEE Trans Multimedia Tools and Applications 75(17):10383–10396CrossRefGoogle Scholar
  26. 26.
    Zhang X, Xu Y, Hu H, Liu Y, Guo Z, Wang Y (2013) Modeling and Analysis of Skype Video Calls: Rate Control and Video Quality. IEEE Trans Multimedia 15(6):1446–1457CrossRefGoogle Scholar
  27. 27.
    Zhou Y, Tian L, Ning X (2013) Intra frame constant rate control scheme for high efficiency video coding. IEEE Internatianal Conference on Computing, Networking and Communications, Multimedia Computing and Communicaitons SymposiumGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Information Science and Electric EngineeringShandong Jiao Tong UniversityJinanChina

Personalised recommendations