Advertisement

Multimedia Tools and Applications

, Volume 77, Issue 16, pp 20455–20476 | Cite as

On security of image ciphers based on logic circuits and chaotic permutations

  • Mahmoud H. Annaby
  • Hassan Ayad
  • Muhammad A. Rushdi
Article

Abstract

This paper introduces a cryptanalysis of image encryption techniques that are using chaotic scrambling and logic gates/circuits. Chaotic scrambling, as well as general permutations are considered together with reversible and irreversible gates, including XOR, Toffoli and Fredkin gates. We also investigate ciphers based on chaotic permutations and balanced logic circuits. Except for the implementation of Fredkin’s gate, these ciphers are insecure against chosen-plaintext attacks, no matter whether a permutation is applied globally on the image or via a block-by-block basis. We introduce a new cipher based on chaotic permutations, logic circuits and randomized Fourier-type transforms. The strength of the new cipher is statistically verified with standard statistical encryption measures.

Keywords

Image encryption Reversible and irreversible circuits Cryptanalysis Permutation Chaotic mappings Fractional Fourier transform 

References

  1. 1.
    Amigó J, Kocarev L, Szczepanski J (2007) Theory and practice of chaotic cryptography. Phys Lett A 366(3):211–216CrossRefzbMATHGoogle Scholar
  2. 2.
    Annaby M, Rushdi M, Nehary E (2016) Image encryption via discrete fractional Fourier-type transforms generated by random matrices. Signal Process: Image Commun 49:25–46Google Scholar
  3. 3.
    Benjamini I, Schramm O, Wilson DB (2005) Balanced boolean functions that can be evaluated so that every input bit is unlikely to be read. In: Proceedings of the thirty-seventh annual ACM symposium on Theory of computing. ACM, pp 244–250Google Scholar
  4. 4.
    Candan C, Kutay M, Ozaktas H (2000) The discrete fractional Fourier transform. IEEE Trans Signal Process 48(5):1329–1337MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    De Vos A (2011) Reversible computing: fundamentals, quantum computing, and applications. Wiley, WeinheimzbMATHGoogle Scholar
  6. 6.
    Devaney R (2003) An introduction to chaotic dynamical systems. Westview Press, CambridgezbMATHGoogle Scholar
  7. 7.
    Gupta P, Agrawal A, Jha NK (2006) An algorithm for synthesis of reversible logic circuits. IEEE Trans Comput-Aided Des Integr Circ Syst 25(11):2317–2330CrossRefGoogle Scholar
  8. 8.
    Hennelly B, Sheridan JT (2003) Optical image encryption by random shifting in fractional Fourier domains. Opt Lett 28(4):269–271CrossRefGoogle Scholar
  9. 9.
    Hsue WL, Chang WC (2015) Real discrete fractional Fourier, Hartley, generalized Fourier and generalized Hsartley transforms with many parameters. IEEE Trans Circ Syst I: Reg Pap 62(10):2594–2605Google Scholar
  10. 10.
    Jolfaei A, Wu XW, Muthukkumarasamy V (2016) On the security of permutation-only image encryption schemes. IEEE Trans Inf Forensic Secur 11 (2):235–246CrossRefGoogle Scholar
  11. 11.
    Kanso A, Smaoui N (2009) Logistic chaotic maps for binary numbers generations. Chaos, Solitons Fractals 40(5):2557–2568CrossRefzbMATHGoogle Scholar
  12. 12.
    Kocarev L (2001) Chaos-based cryptography: a brief overview. IEEE Circ Syst Mag 1(3):6–21CrossRefGoogle Scholar
  13. 13.
    Li C, Li S, Alvarez G, Chen G, Lo KT (2007) Cryptanalysis of two chaotic encryption schemes based on circular bit shift and XOR operations. Phys Lett A 369(1):23–30CrossRefzbMATHGoogle Scholar
  14. 14.
    Li S, Li C, Chen G, Bourbakis NG, Lo KT (2008) A general quantitative cryptanalysis of permutation-only multimedia ciphers against plaintext attacks. Signal Process: Image Commun 23(3):212–223Google Scholar
  15. 15.
    Li C, Lo KT (2011) Optimal quantitative cryptanalysis of permutation-only multimedia ciphers against plaintext attacks. Signal process 91(4):949–954CrossRefzbMATHGoogle Scholar
  16. 16.
    Mao Y, Chen G, Lian S (2004) A novel fast image encryption scheme based on 3D chaotic baker maps. Int J Bifurcation Chaos 14(10):3613–3624MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Mao Y, Chen G (2005) Chaos-based image encryption. In: Handbook of geometric computing. Springer, Berlin, pp 231–265Google Scholar
  18. 18.
    Morrison M (2014) Theory, synthesis, and application of adiabatic and reversible logic circuits for security applications. In: 2014 IEEE Computer Society Annual Symposium on VLSI. IEEE, pp 252–255Google Scholar
  19. 19.
    Pei SC, Yeh MH (1997) Improved discrete fractional Fourier transform. Opt Lett 22(14):1047–1049CrossRefGoogle Scholar
  20. 20.
    Pei SC, Hsue WL (2006) The multiple-parameter discrete fractional Fourier transform. IEEE Signal Process Lett 13(6):329–332CrossRefGoogle Scholar
  21. 21.
    Sam IS, Devaraj P, Bhuvaneswaran RS (2011) Chaos based image encryption scheme based on enhanced logistic map. In: International Conference on Distributed Computing and Internet Technology. Springer, pp 290–300Google Scholar
  22. 22.
    Shannon CE (2001) A mathematical theory of communication. ACM SIGMOBILE Mob Comput Commun Rev 5(1):3–55MathSciNetCrossRefGoogle Scholar
  23. 23.
    Shende VV, Prasad AK, Markov IL, Hayes JP (2003) Synthesis of reversible logic circuits. IEEE Trans Comput-Aided Des Integr Circ Syst 22(6):710–722CrossRefGoogle Scholar
  24. 24.
    Tang Z, Wang F, Zhang X (2017) Image encryption based on random projection partition and chaotic system. Multimed Tools Appl 76(6):82578283CrossRefGoogle Scholar
  25. 25.
    Thapliyal H, Zwolinski M (2006) Reversible logic to cryptographic hardware: A new paradigm. In: 2006 49th IEEE International Midwest Symposium on Circuits and Systems, vol 1. IEEE, pp 342–346Google Scholar
  26. 26.
    Wang Y, Liao X, Xiang T, Wong KW, Yang D (2007) Cryptanalysis and improvement on a block cryptosystem based on iteration a chaotic map. Phys Lett A 363(4):277–281CrossRefzbMATHGoogle Scholar
  27. 27.
    Wong KW (2009) Image encryption using chaotic maps. In: Intelligent computing based on chaos. Springer, Berlin, pp 333–354Google Scholar
  28. 28.
    Wu Y, Noonan JP, Agaian S (2011) NPCR and UACI color image encryption using randomness tests for image encryption. Cyber journals: multidisciplinary journals in science and technology. J Select Areas Telecommun (JSAT), April Edition:31–38Google Scholar
  29. 29.
    Xiang T, Liao X, Tang G, Chen Y, Wong Kw (2006) A novel block cryptosystem based on iterating a chaotic map. Phys Lett A 349(1):109–115CrossRefzbMATHGoogle Scholar
  30. 30.
    Xu L, Gou X, Li Z, Li J (2017) A novel chaotic image encryption algorithm using block scrambling and dynamic index based diffusion. Opt Lasers Eng 91:41–52CrossRefGoogle Scholar
  31. 31.
    Ye G (2010) Image scrambling encryption algorithm of pixel bit based on chaos map. Pattern Recogn Lett 31(5):347–354CrossRefGoogle Scholar
  32. 32.
    Yuan HM, Gong LH, Wang J (2017) A new image cryptosystem based on 2D hyper-chaotic system. Multimedia Tools and Applications 76(6):80878108CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Mahmoud H. Annaby
    • 1
  • Hassan Ayad
    • 1
  • Muhammad A. Rushdi
    • 2
  1. 1.Department of Mathematics, Faculty of ScienceCairo UniversityGizaEgypt
  2. 2.Department of Biomedical Engineering and Systems, Faculty of EngineeringCairo UniversityGizaEgypt

Personalised recommendations