Advertisement

Multimedia Tools and Applications

, Volume 77, Issue 16, pp 20569–20596 | Cite as

Greyscale-images-oriented progressive secret sharing based on the linear congruence equation

  • Lintao Liu
  • Yuliang Lu
  • Xuehu Yan
  • Huaixi Wang
Article

Abstract

Secret image sharing (SIS) can be applied to protect a secret image when the secret is transmitted in public channels. However, classic SIS schemes, e.g., visual secret sharing (VSS) and Shamir’s polynomial-based scheme, are not suitable for progressive encryption of greyscale images, because they will lead to many problems, such as “All-or-Nothing”, lossy recovery, complex computations and so on. Based on the linear congruence equation, three novel progressive secret sharing (PSS) schemes are proposed to overcome these problems: (k, k) threshold LCSS and (k, n) threshold LCPSS aim to achieve general threshold progressive secret sharing with simple computations. Furthermore, extended LCPSS (ELCPSS) is developed to generate meaningful shadow images, which enable simple management and misleading the enemy. Both theoretical proofs and experimental results are given to demonstrate the validity of the proposed scheme.

Keywords

Secret sharing Progressive secret sharing Greyscale image Linear congruence Simple computations 

Notes

Acknowledgements

The authors wish to thank the anonymous reviewers for their suggestions to improve this paper.

This work is supported by the National Natural Science Foundation of China (Grant Number: 61602491).

References

  1. 1.
    Ateniese G, Blundo C, De Santis A, Stinson DR (1996) Visual cryptography for general access structures. Inf Comput 129(2):86–106MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Blakley GR (1979) Safeguarding cryptographic keys. Proc of the National Computer Conference1979 48:313–317Google Scholar
  3. 3.
    Chang CC, Hsieh YP, Lin CH (2008) Sharing secrets in stego images with authentication. Pattern Recogn 41(10):3130–3137CrossRefzbMATHGoogle Scholar
  4. 4.
    Chen SK (2009) Friendly progressive visual secret sharing using generalized random grids. Opt Eng 48(11):117,001–117,001CrossRefGoogle Scholar
  5. 5.
    Chen SK, Lin JC (2005) Fault-tolerant and progressive transmission of images. Pattern Recogn 38(12):2466–2471CrossRefGoogle Scholar
  6. 6.
    Cheng TF, Chang CC, Liu L (2017) Secret sharing: using meaningful image shadows based on gray code. Multimedia Tools and Applications 76(7):9337–9362CrossRefGoogle Scholar
  7. 7.
    Cimato S, De Prisco R, De Santis A (2005) Optimal colored threshold visual cryptography schemes. Des Codes Crypt 35(3):311–335MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fang WP, Wang RZ, Chen SK (2014) Non-expanding friendly visual cryptography. Genetic and evolutionary computing. Springer, Cham, pp 155–161Google Scholar
  9. 9.
    Guo T, Liu F, Wu C (2013) Threshold visual secret sharing by random grids with improved contrast. J Syst Softw 86(8):2094–2109CrossRefGoogle Scholar
  10. 10.
    Hou YC, Quan ZY (2011) Progressive visual cryptography with unexpanded shares. IEEE Trans Circuits Syst Video Technol 21(11):1760–1764CrossRefGoogle Scholar
  11. 11.
    Hou YC, Quan ZY, Tsai CF, Tseng AY (2013) Block-based progressive visual secret sharing. Inf Sci 233:290–304CrossRefGoogle Scholar
  12. 12.
    Huang CP, Hsieh CH, Huang PS (2010) Progressive sharing for a secret image. J Syst Softw 83(3):517–527CrossRefGoogle Scholar
  13. 13.
    Kumar S, Sharma RK (2013) Secret image sharing for general access structures using random grids. Int J Comput Appl 83(7):1–8Google Scholar
  14. 14.
    Lee SS, Na JC, Sohn SW, Park C, Seo DH, Kim SJ (2002) Visual cryptography based on an interferometric encryption technique. ETRI J 24(5):373–380CrossRefGoogle Scholar
  15. 15.
    Li P, Ma PJ, Su XH, Yang CN (2012) Improvements of a two-in-one image secret sharing scheme based on gray mixing model. J Vis Commun Image Represent 23(3):441–453CrossRefGoogle Scholar
  16. 16.
    Liu F, Wu C (2011) Embedded extended visual cryptography schemes. IEEE Trans Inf Forensics Secur 6(2):307–322CrossRefGoogle Scholar
  17. 17.
    Liu F, Wu CK, Lin XJ (2008) Colour visual cryptography schemes. IET Inf Secur 2(4):151–165CrossRefGoogle Scholar
  18. 18.
    Liu Y, Zhang X, Cui J, Wu C, Aghajan H, Zha H (2010) Visual analysis of child-adult interactive behaviors in video sequences. In: 2010 16th international conference on virtual systems and multimedia (VSMM). IEEE, Piscataway, pp 26–33Google Scholar
  19. 19.
    Liu Y, Nie L, Han L, Zhang L, Rosenblum DS (2015) Action2activity: recognizing complex activities from sensor data. In: IJCAI, pp 1617–1623Google Scholar
  20. 20.
    Liu L, Cheng L, Liu Y, Jia Y, Rosenblum DS (2016) Recognizing complex activities by a probabilistic interval-based model. In: AAAI, vol 30, pp 1266–1272Google Scholar
  21. 21.
    Liu Y, Nie L, Liu L, Rosenblum DS (2016) From action to activity: sensor-based activity recognition. Neurocomputing 181:108–115CrossRefGoogle Scholar
  22. 22.
    Liu Y, Zhang L, Nie L, Yan Y, Rosenblum DS (2016) Fortune teller: predicting your career path. AAAI, pp 201–207Google Scholar
  23. 23.
    Lu Y, Wei Y, Liu L, Zhong J, Sun L, Liu Y (2017) Towards unsupervised physical activity recognition using smartphone accelerometers. Multimedia Tools and Applications 76(8):10,701–10,719CrossRefGoogle Scholar
  24. 24.
    Naor M, Shamir A (1994) Visual cryptography. Workshop on the theory and application of of cryptographic techniques. Springer, Berlin, pp 1–12Google Scholar
  25. 25.
    Preoţiuc-Pietro D, Liu Y, Hopkins D, Ungar L (2017) Beyond binary labels: political ideology prediction of twitter users. In: Proceedings of the 55th annual meeting of the association for computational linguistics (volume 1: Long papers), vol 1, pp 729–740Google Scholar
  26. 26.
    Shamir A (1979) How to share a secret. Commun ACM 22(11):612–613MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Shen G, Liu F, Fu Z, Yu B (2016) Perfect contrast xor-based visual cryptography schemes via linear algebra. Des Codes Crypt :1–23Google Scholar
  28. 28.
    Thien CC, Lin JC (2002) Secret image sharing. Comput Graph 26(5):765–770CrossRefGoogle Scholar
  29. 29.
    Tuyls P, Kevenaar T, Schrijen GJ, Staring T, van Dijk M (2004) Visual crypto displays enabling secure communications. In: Security in pervasive computing. Springer, Berlin, pp 271–284Google Scholar
  30. 30.
    Tuyls P, Hollmann HD, Van Lint JH, Tolhuizen L (2005) Xor-based visual cryptography schemes. Des Codes Crypt 37(1):169–186MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Viet DQ, Kurosawa K (2004) Almost ideal contrast visual cryptography with reversing. Lecture notes in computer science, pp 353–365Google Scholar
  32. 32.
    Wang W, Tan H, Pang Y, Li Z, Ran P, Wu J (2016) A novel encryption algorithm based on dwt and multichaos mapping. J Sens 2016(5):1–7Google Scholar
  33. 33.
    Wu X, Ou D, Liang Q, Sun W (2012) A user-friendly secret image sharing scheme with reversible steganography based on cellular automata. J Syst Softw 85(8):1852–1863CrossRefGoogle Scholar
  34. 34.
    Yan X, Wang S, El-Latif AAA, Sang J, Niu X (2014) A novel perceptual secret sharing scheme. Transactions on Data Hiding and Multimedia Security 9:68–90zbMATHGoogle Scholar
  35. 35.
    Yan X, Liu X, Yang CN (2015) An enhanced threshold visual secret sharing based on random grids. J Real-Time Image Proc :1–13Google Scholar
  36. 36.
    Yan X, Wang S, Niu X, Yang CN (2015) Generalized random grids-based threshold visual cryptography with meaningful shares. Signal Process 109:317–333CrossRefGoogle Scholar
  37. 37.
    Yang CN (2004) New visual secret sharing schemes using probabilistic method. Pattern Recognit Lett 25(4):481–494MathSciNetCrossRefGoogle Scholar
  38. 38.
    Yang CN, Chen TS, Yu KH, Wang CC (2007) Improvements of image sharing with steganography and authentication. J Syst Softw 80(7):1070–1076CrossRefGoogle Scholar
  39. 39.
    Yang B, Busch C, Niu X (2009) Perceptual image encryption via reversible histogram spreading. In: Proceedings of 6th international symposium on Image and signal processing and analysis, 2009. ISPA 2009. IEEE, Piscataway, pp 471–476Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.National University of Defense TechnologyHefeiChina

Personalised recommendations