Multimedia Tools and Applications

, Volume 78, Issue 1, pp 605–618 | Cite as

CFMDA: collaborative filtering-based MiRNA-disease association prediction

  • ZhiSheng Li
  • Bingtao LiuEmail author
  • Chenggang YanEmail author


MicroRNAs (miRNAs) are increasingly becoming the focus in a number of researches because abundant studies certify miRNAs play vital roles and have critical functions in various biologic processes. Considering the high cost of experiment research to miRNA-disease association, we explore the way to predict the miRNA-disease association using the extensive collaborative filtering in order to diagnose the diseases better. Specifically, we introduce the prediction model of collaborative filtering-based miRNA-disease association prediction (CFMDA) and verify the model by leave-one-out cross validation(LOOCV) and case validation. The CFMDA considers the miRNA functional similarity and disease similarity while uses minimal amount of related information. CFMDA achieves AUCs of 0.8364 using leave-one-out cross validation, which is the highest AUCs compared to other 5 methods. Meanwhile, we obtain more than 85% confirmation of predicted associations using three kinds of case validations. Generally, our method is faster and more effective than other state-of-the-art methods while it doesn’t need any negative samples.


miRNA-disease association prediction Collaborative filtering Computational model 



This work is supported by National Nature Science Foundation of China (61671196, 61327902) Zhejiang Province Nature Science Foundation of China LR17F030006.


  1. 1.
    Ambros V (2004) The functions of animal micrornas. Nature 431(7006):350–355CrossRefGoogle Scholar
  2. 2.
    Birks D K, Barton V N, Donson A M, Handler MH, Vibhakar R, Foreman N K (2011) Survey of microrna expression in pediatric brain tumors. Pediatr Blood Cancer 56(2):211–216CrossRefGoogle Scholar
  3. 3.
    Calin GA, Croce CM (2006) Microrna signatures in human cancers. Nat Rev Cancer 6(11):857–866CrossRefGoogle Scholar
  4. 4.
    Chen X, Liu M-X, Yan G-Y (2012) Rwrmda: predicting novel human microrna–disease associations. Mol BioSyst 8(10):2792–2798CrossRefGoogle Scholar
  5. 5.
    Chen X, Yan G-Y (2014) Semi-supervised learning for potential human microrna-disease associations inference. Sci Rep 4:5501CrossRefGoogle Scholar
  6. 6.
    Chen X, Yan CC, Xu Z, You Z-H, Deng L, Liu Y, Zhang Y, Dai Q (2016) Wbsmda: within and between score for MiRNA-disease association prediction. Sci Rep 6Google Scholar
  7. 7.
    Chen X, Yan CC, Xu Z, You Z-H, Huang Y-A, Yan G-Y (2016) Hgimda: Heterogeneous graph inference for mirna-disease association prediction. Oncotarget 7 (40):65257–65269Google Scholar
  8. 8.
    Esquela-Kerscher A, Slack FJ (2006) Oncomirs—micrornas with a role in cancer. Nat Rev Cancer 6(4):259–269CrossRefGoogle Scholar
  9. 9.
    Griffiths-Jones S, Grocock R J, Dongen SV, Bateman A, Enright AJ (2006) mirbase: microrna sequences, targets and gene nomenclature. Nucleic Acids Res 34(suppl 1):D140–D144CrossRefGoogle Scholar
  10. 10.
    Jiang Q, Hao Y, Wang G, Juan L, Zhang T, Teng M, Liu Y, Wang Y (2010) Prioritization of disease micrornas through a human phenome-micrornaome network. BMC Syst Biol 4(1):S2CrossRefGoogle Scholar
  11. 11.
    Karaayvaz M, Pal T, Bo S, Zhang C, Georgakopoulos P, Mehmood S, Burke S, Shroyer K, Ju J (2011) Prognostic significance of mir-215 in colon cancer. Clin Color Cancer 10(4):340–347CrossRefGoogle Scholar
  12. 12.
    Li X, Xu J, Li Ys (2012) Prioritizing candidate disease mirnas by topological features in the mirna-target dysregulated network. In: Systems biology in cancer research and drug discovery. Springer, Berlin, pp 289–306Google Scholar
  13. 13.
    Li Y, Qiu C, Tu J, Geng B, Yang J, Jiang T, Cui Q (2013) HMDD v2. 0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res 42(D1):D1070–D1074CrossRefGoogle Scholar
  14. 14.
    Liang A-L, Zhang T-T, Zhou N, Wu CY, Lin M-H, Liu Y-J (2016) mirna-10b sponge: An anti-breast cancer study in vitro. Oncol Rep 35(4):1950–1958CrossRefGoogle Scholar
  15. 15.
    Miska EA (2005) How micrornas control cell division, differentiation and death. Curr Opin Genet Dev 15(5):563–568CrossRefGoogle Scholar
  16. 16.
    Mørk S, Pletscher-Frankild S, Palleja Caro A, Gorodkin J, Jensen LJ (2013) Protein-driven inference of miRNA–disease associations. Bioinformatics 30 (3):392–397CrossRefGoogle Scholar
  17. 17.
    Nathans R, Chu C-y, Serquina AK, Lu C-C, Cao H, Rana TM (2009) Cellular microrna and p bodies modulate host-hiv-1 interactions. Mol cell 34 (6):696–709CrossRefGoogle Scholar
  18. 18.
    Nassar FJ, El Sabban M, Zgheib NK, Tfayli A, Boulos F, Jabbour M, Talhouk R, Bazarbachi A, Calin GA, Nasr R et al (2014) mirna as potential biomarkers of breast cancer in the lebanese population and in young women: a pilot study. PloS one 9(9):e107566CrossRefGoogle Scholar
  19. 19.
    Pan R, Zhou Y, Cao B, Liu NN, Lukose R, Scholz M, Yang Q (2008) One-class collaborative filtering. In: Eighth IEEE international conference on data Mining 2008. ICDM’08. IEEE, USA, pp 502–511Google Scholar
  20. 20.
    Schaefer A, Jung M, Mollenkopf H-J, Wagner I, Stephan C, Jentzmik F, Miller K, Lein M, Kristiansen G, Jung K (2010) Diagnostic and prognostic implications of microrna profiling in prostate carcinoma. Int J Cancer 126(5):1166–1176Google Scholar
  21. 21.
    Shi H, Xu J, Zhang G, Xu L, Li C, Li W, Zhao Z, Jiang W, Guo Z, Li X (2013) Walking the interactome to identify human mirna-disease associations through the functional link between mirna targets and disease genes. BMC Syst Biol 7 (1):101CrossRefGoogle Scholar
  22. 22.
    Takahashi M, Cuatrecasas M, Balaguer F, Hur K, Toiyama Y, Castells A, Richard Boland C, Goel A (2012) The clinical significance of mir-148a as a predictive biomarker in patients with advanced colorectal cancer. PloS one 7(10):e46684CrossRefGoogle Scholar
  23. 23.
    Wan D, He S, Xie B, Xu G, Gu W, Shen C, Hu Y, Wang X, Zhi Q, Wang L (2013) Aberrant expression of mir-199a-3p and its clinical significance in colorectal cancers. Med Oncol 30(1):378CrossRefGoogle Scholar
  24. 24.
    Xuan P, Han K, Guo M, Guo Y, Li J, Ding J, Liu Y, Dai Q, Li J, Teng Z et al (2013) Prediction of micrornas associated with human diseases based on weighted k most similar neighbors. PloS one 8(8):e70204CrossRefGoogle Scholar
  25. 25.
    Yan C, Zhang Y, Xu J, Dai F, Li L, Dai Q, Wu F (2014) A highly parallel framework for hevc coding unit partitioning tree decision on many-core processors. IEEE Signal Process Lett 21(5):573–576CrossRefGoogle Scholar
  26. 26.
    Yan C, Zhang Y, Xu J, Dai F, Zhang J, Dai Q, Wu F (2014) Efficient parallel framework for hevc motion estimation on many-core processors. IEEE Trans Circ Syst Video Technol 24(12):2077–2089CrossRefGoogle Scholar
  27. 27.
    Yan C, Xie H, Yang D, Yin J, Zhang Y, Dai Q (2017) Supervised hash coding with deep neural network for environment perception of intelligent vehicles. IEEE Trans Intell Trans Syst PP(99):1–12Google Scholar
  28. 28.
    Yan C, Xie H, Yang D, Yin J, Zhang Y, Dai Q (2017) Effective Uyghur language text detection in complex background images for traffic prompt identification. IEEE Trans Intell Trans Syst PP(99):1–10Google Scholar
  29. 29.
    Zhou J, Yu L, Gao X, Hu J, Wang J, Dai Z, Wang J-F, Zhang Z, Lu S, Huang X et al (2011) Plasma microrna panel to diagnose hepatitis b virus–related hepatocellular carcinoma. J Clin Oncol 29(36):4781–4788CrossRefGoogle Scholar
  30. 30.
    Zhu X, Zi H, Shen HT, Zhao X (2013) Linear cross-modal hashing for efficient multimedia search. In: Proceedings of the 21st ACM international conference on multimedia, pp 143–152Google Scholar
  31. 31.
    Zhu X, Zhang L, Zi H (2014) A sparse embedding and least variance encoding approach to hashing. IEEE Trans Image Process 23(9):3737–3750MathSciNetCrossRefGoogle Scholar
  32. 32.
    Zhu X, Li X, Zhang S (2016) Block-row sparse multiview multilabel learning for image classification. IEEE Trans Cybern 46(2):450–461CrossRefGoogle Scholar
  33. 33.
    Zhu X, Li X, Zhang S, Ju C, Wu X (2017) Robust joint graph sparse coding for unsupervised spectral feature selection. IEEE Trans Neural Netw Learn Syst 28(6):1263–1275MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Hangzhou Dianzi UniversityHangzhouChina

Personalised recommendations