Advertisement

Multimedia Tools and Applications

, Volume 77, Issue 17, pp 22705–22733 | Cite as

Development of pathological brain detection system using Jaya optimized improved extreme learning machine and orthogonal ripplet-II transform

  • Deepak Ranjan Nayak
  • Ratnakar Dash
  • Banshidhar Majhi
Article

Abstract

Pathological brain detection systems (PBDSs) have drawn much attention from researchers over the past two decades because of their significance in taking correct clinical decisions. In this paper, an efficient PBDS based on MR images is introduced that markedly improves the recent results. The proposed system makes use of contrast limited adaptive histogram equalization (CLAHE) and orthogonal discrete ripplet-II transform (O-DR2T) with degree 2 to enhance the quality of the input MR images and extract the features respectively. Subsequently, relevant features are obtained using PCA+LDA approach. Finally, a novel learning algorithm called IJaya-ELM is proposed that combines improved Jaya algorithm (IJaya) and extreme learning machine (ELM) for segregation of MR images as pathological or healthy. The improved Jaya algorithm is utilized to optimize the input weights and hidden biases of single-hidden-layer feedforward neural networks (SLFN), whereas one analytical method is used for determining the output weights. The proposed algorithm performs optimization according to both the root mean squared error (RMSE) and the norm of the output weights of SLFNs. Extensive experiments are carried out using three benchmark datasets and the results are compared against other competent schemes. The experimental results demonstrate that the proposed scheme brings potential improvements in terms of classification accuracy and number of features. Moreover, the proposed IJaya-ELM classifier achieves higher accuracy and obtains compact network architecture compared to conventional ELM and BPNN classifier.

Keywords

Pathological Brain Detection System (PBDS) Magnetic Resonance Imaging (MRI) Orthogonal Discrete Ripplet-II Transform (O-DR2T) Extreme Learning Machine (ELM) Jaya Algorithm 

References

  1. 1.
    Candes E, Demanet L, Donoho D, Ying L (2006) Fast discrete curvelet transforms. Multiscale Model Simul 5(3):861–899MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Candès EJ, Donoho DL (1999) Ridgelets: a key to higher-dimensional intermittency?. Philos Trans R Soc Lond A Math Phys Eng Sci 357(1760):2495–2509MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Candès EJ, Donoho DL (2000) Curvelets- a surprisingly effective nonadaptive representation for objects with edges. Vanderbilt University Press, Nashville, pp 105–120Google Scholar
  4. 4.
    Candès EJ, Donoho DL (2004) New tight frames of curvelets and optimal representations of objects with piecewise C 2 singularities. Commun Pure Appl Math 57(2):219–266CrossRefzbMATHGoogle Scholar
  5. 5.
    Chaplot S, Patnaik LM, Jagannathan NR (2006) Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomed Signal Process Control 1(1):86–92CrossRefGoogle Scholar
  6. 6.
    Cormack A (1981) The radon transform on a family of curves in the plane. Proc Am Math Soc 83(2):325–330MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cormack A (1982) The radon transform on a family of curves in the plane. ii. Proc Am Math Soc 86(2):293–298MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Das S, Chowdhury M, Kundu K (2013) Brain MR image classification using multiscale geometric analysis of ripplet. Prog Electromagn Res 137:1–17CrossRefGoogle Scholar
  9. 9.
    Do MN, Vetterli M (2003) The finite ridgelet transform for image representation. IEEE Trans Image Process 12(1):16–28MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    El-Dahshan EA, Mohsen HM, Revett K, Salem ABM (2014) Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm. Expert Syst Appl 41(11):5526–5545CrossRefGoogle Scholar
  11. 11.
    El-Dahshan ESA, Honsy T, Salem ABM (2010) Hybrid intelligent techniques for MRI brain images classification. Digital Signal Process 20(2):433–441CrossRefGoogle Scholar
  12. 12.
    Ghahremani M, Ghassemian H (2015) Remote sensing image fusion using ripplet transform and compressed sensing. IEEE Geosci Remote Sens Lett 12(3):502–506CrossRefGoogle Scholar
  13. 13.
    Hamza R, Muhammad K, Lv Z, Titouna F (2017) Secure video summarization framework for personalized wireless capsule endoscopy. Pervasive and Mobile ComputingGoogle Scholar
  14. 14.
    Han F, Yao HF, Ling QH (2013) An improved evolutionary extreme learning machine based on particle swarm optimization. Neurocomputing 116:87–93CrossRefGoogle Scholar
  15. 15.
    Holzinger A (2016) Interactive machine learning for health informatics: when do we need the human-in-the-loop?. Brain Infor 3(2):119–131CrossRefGoogle Scholar
  16. 16.
    Holzinger A, Plass M, Holzinger K, Criṡan GC, Pintea CM, Palade V (2016) Towards interactive machine learning (iml): applying ant colony algorithms to solve the traveling salesman problem with the human-in-the-loop approach. In: International conference on availability, reliability, and security. Springer, pp 81–95Google Scholar
  17. 17.
    Holzinger A, Plass M, Holzinger K, Crisan GC, Pintea CM, Palade V (2017) A glass-box interactive machine learning approach for solving np-hard problems with the human-in-the-loop. arXiv preprint. arXiv:http://arXiv.org/abs/1708.01104
  18. 18.
    Holzinger K, Palade V, Rabadan R, Holzinger A (2014) Darwin or lamarck? Future challenges in evolutionary algorithms for knowledge discovery and data mining. In: Interactive knowledge discovery and data mining in biomedical informatics. Springer, pp 35–56Google Scholar
  19. 19.
    Huang GB, Wang DH, Lan Y (2011) Extreme learning machines: a survey. Int J Mach Learn Cybern 2(2):107–122CrossRefGoogle Scholar
  20. 20.
    Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In: IEEE international joint conference on neural networks, vol 2. IEEE, pp 985–990Google Scholar
  21. 21.
    Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501CrossRefGoogle Scholar
  22. 22.
    Johnson KA, Becker JA (1999) The whole brain atlas. http://www.med.harvard.edu/AANLIB/
  23. 23.
    Maitra M, Chatterjee A (2006) A Slantlet transform based intelligent system for magnetic resonance brain image classification. Biomed Signal Process Control 1 (4):299–306CrossRefGoogle Scholar
  24. 24.
    Martínez AM, Kak AC (2001) PCA versus LDA. IEEE Trans Pattern Anal Mach Intell 23(2):228–233CrossRefGoogle Scholar
  25. 25.
    Nayak DR, Dash R, Majhi B (2015) Classification of brain MR images using discrete wavelet transform and random forests. In: Fifth national conference on computer vision, pattern recognition, image processing and graphics (NCVPRIPG). IEEE, pp 1–4Google Scholar
  26. 26.
    Nayak DR, Dash R, Majhi B (2015) Least squares svm approach for abnormal brain detection in mri using multiresolution analysis. In: 2015 international conference on computing, communication and security (ICCCS). IEEE, pp 1–6Google Scholar
  27. 27.
    Nayak DR, Dash R, Majhi B (2016) Brain MR image classification using two-dimensional discrete wavelet transform and AdaBoost with random forests. Neurocomputing 177:188–197CrossRefGoogle Scholar
  28. 28.
    Nayak DR, Dash R, Majhi B (2016) Pathological brain detection using curvelet features and least squares SVM. Multimed Tool Appl 75:1–24Google Scholar
  29. 29.
    Nayak DR, Dash R, Majhi B (2017) Stationary wavelet transform and adaboost with SVM based pathological brain detection in MRI scanning. CNS Neurol Disord Drug Targets 16:137–149Google Scholar
  30. 30.
    Nayak DR, Dash R, Majhi B, Mohammed J (2016) Non-linear cellular automata based edge detector for optical character images. Simulation 92:1–11Google Scholar
  31. 31.
    Nayak DR, Dash R, Majhi B, Prasad V (2017) Automated pathological brain detection system: a fast discrete curvelet transform and probabilistic neural network based approach. Expert Systems with ApplicationsGoogle Scholar
  32. 32.
    Pizer SM, Johnston RE, Ericksen JP, Yankaskas BC, Muller KE (1990) Contrast-limited adaptive histogram equalization: speed and effectiveness. In: Proceedings of the first conference on visualization in biomedical computing. IEEE, pp 337–345Google Scholar
  33. 33.
    Rao R (2016) Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int J Ind Eng Comput 7(1):19–34Google Scholar
  34. 34.
    Rao R, More K, Taler J, Ocłoń P (2016) Dimensional optimization of a micro-channel heat sink using jaya algorithm. Appl Therm Eng 103:572–582CrossRefGoogle Scholar
  35. 35.
    Sajjad M, Khan S, Jan Z, Muhammad K, Moon H, Kwak JT, Rho S, Baik SW, Mehmood I (2017) Leukocytes classification and segmentation in microscopic blood smear: a resource-aware healthcare service in smart cities. IEEE Access 5:3475–3489CrossRefGoogle Scholar
  36. 36.
    Saritha M, Joseph KP, Mathew AT (2013) Classification of MRI brain images using combined wavelet entropy based spider web plots and probabilistic neural network. Pattern Recogn Lett 34(16):2151–2156CrossRefGoogle Scholar
  37. 37.
    Suresh S, Babu RV, Kim H (2009) No-reference image quality assessment using modified extreme learning machine classifier. Appl Soft Comput 9(2):541–552CrossRefGoogle Scholar
  38. 38.
    Wang S, Li P, Chen P, Phillips P, Liu G, Du S, Zhang Y (2017) Pathological brain detection via wavelet packet tsallis entropy and real-coded biogeography-based optimization. Fundamenta Informaticae 151(1-4):275–291MathSciNetCrossRefGoogle Scholar
  39. 39.
    Wang S, Lu S, Dong Z, Yang J, Yang M, Zhang Y (2016) Dual-tree complex wavelet transform and twin support vector machine for pathological brain detection. Appl Sci 6(6):169CrossRefGoogle Scholar
  40. 40.
    Wang S, Phillips P, Yang J, Sun P, Zhang Y (2016) Magnetic resonance brain classification by a novel binary particle swarm optimization with mutation and time-varying acceleration coefficients. Biomed Eng/Biomedizinische Technik 61:431–441Google Scholar
  41. 41.
    Wang S, Rao RV, Chen P, Zhang Y, Liu A, Wei L (2017) Abnormal breast detection in mammogram images by feed-forward neural network trained by jaya algorithm. Fundamenta Informaticae 151(1-4):191–211MathSciNetCrossRefGoogle Scholar
  42. 42.
    Wang S, Zhang Y, Dong Z, Du S, Ji G, Yan J, Yang J, Wang Q, Feng C, Phillips P (2015) Feed-forward neural network optimized by hybridization of PSO and ABC for abnormal brain detection. Int J Imaging Syst Technol 25(2):153–164CrossRefGoogle Scholar
  43. 43.
    Wang S, Zhang Y, Yang X, Sun P, Dong Z, Liu A, Yuan TF (2015) Pathological brain detection by a novel image feature—fractional Fourier entropy. Entropy 17(12):8278–8296CrossRefGoogle Scholar
  44. 44.
    Westbrook C (2014) Handbook of MRI technique. Wiley, OxfordGoogle Scholar
  45. 45.
    Xu J, Wu D (2012) Ripplet transform type II transform for feature extraction. IET Image Process 6(4):374–385MathSciNetCrossRefGoogle Scholar
  46. 46.
    Xu J, Yang L, Wu D (2010) Ripplet: a new transform for image processing. J Vis Commun Image Represent 21(7):627–639CrossRefGoogle Scholar
  47. 47.
    Xu Y, Shu Y (2006) Evolutionary extreme learning machine based on particle swarm optimization. In: International symposium on neural networks. Springer, pp 644–652Google Scholar
  48. 48.
    Yang G, Zhang Y, Yang J, Ji G, Dong Z, Wang S, Feng C, Wang Q (2015) Automated classification of brain images using wavelet-energy and biogeography-based optimization. Multimed Tool Appl 75:1–17Google Scholar
  49. 49.
    Yang J, Yang J (2003) Why can LDA be performed in PCA transformed space?. Pattern Recogn 36(2):563–566CrossRefGoogle Scholar
  50. 50.
    Zhang G, Wang Q, Feng C, Lee E, Ji G, Wang S, Zhang Y, Yan J (2015) Automated classification of brain MR images using wavelet-energy and support vector machines. In: 2015 international conference on mechatronics, electronic, industrial and control engineering (MEICx-15), pp 683–686Google Scholar
  51. 51.
    Zhang Y, Dong Z, Liu A, Wang S, Ji G, Zhang Z, Yang J (2015) Magnetic resonance brain image classification via stationary wavelet transform and generalized eigenvalue proximal support vector machine. J Med Imaging Health Inform 5(7):1395–1403CrossRefGoogle Scholar
  52. 52.
    Zhang Y, Dong Z, Wang S, Ji G, Yang J (2015) Preclinical diagnosis of magnetic resonance (MR) brain images via discrete wavelet packet transform with Tsallis entropy and generalized eigenvalue proximal support vector machine (GEPSVM). Entropy 17(4):1795–1813CrossRefGoogle Scholar
  53. 53.
    Zhang Y, Dong Z, Wu L, Wang S (2011) A hybrid method for MRI brain image classification. Expert Syst with Appl 38(8):10,049–10,053CrossRefGoogle Scholar
  54. 54.
    Zhang Y, Ranjan Nayak D, Yang M, Yuan TF, Liu B, Lu H, Wang S (2017) Detection of unilateral hearing loss by stationary wavelet entropy. CNS Neurol Disord Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders) 16 (2):122–128Google Scholar
  55. 55.
    Zhang Y, Sun Y, Phillips P, Liu G, Zhou X, Wang S (2016) A multilayer perceptron based smart pathological brain detection system by fractional Fourier entropy. J Med Syst 40(7):1–11CrossRefGoogle Scholar
  56. 56.
    Zhang Y, Wang S, Dong Z, Phillip P, Ji G, Yang J (2015) Pathological brain detection in magnetic resonance imaging scanning by wavelet entropy and hybridization of biogeography-based optimization and particle swarm optimization. Prog Electromagn Res 152:41–58CrossRefGoogle Scholar
  57. 57.
    Zhang Y, Wang S, Ji G, Dong Z (2013) An MR brain images classifier system via particle swarm optimization and kernel support vector machine. Sci World J 2013:1–9Google Scholar
  58. 58.
    Zhang Y, Wang S, Sun P, Phillips P (2015) Pathological brain detection based on wavelet entropy and Hu moment invariants. Bio-Med Mater Eng 26(s1):S1283–S1290CrossRefGoogle Scholar
  59. 59.
    Zhang Y, Wang S, Wu L (2010) A novel method for magnetic resonance brain image classification based on adaptive chaotic PSO. Prog Electromagn Res 109:325–343CrossRefGoogle Scholar
  60. 60.
    Zhang Y, Wu L (2012) An MR brain images classifier via principal component analysis and kernel support vector machine. Prog Electromagn Res 130:369–388CrossRefGoogle Scholar
  61. 61.
    Zhang Y, Wu L, Wang S (2011) Magnetic resonance brain image classification by an improved artificial bee colony algorithm. Prog Electromagn Res 116:65–79CrossRefGoogle Scholar
  62. 62.
    Zhang Y, Chen S, Wang S, Yang JF, Phillips P (2015) Magnetic resonance brain image classification based on weighted-type fractional Fourier transform and nonparallel support vector machine. Int J Imaging Syst Technol 25(4):317–327CrossRefGoogle Scholar
  63. 63.
    Zhang Y, Chen XQ, Zhan TM, Jiao ZQ, Sun Y, Chen ZM, Yao Y, Fang LT, Lv YD, Wang S (2016) Fractal dimension estimation for developing pathological brain detection system based on minkowski-Bouligand method. IEEE Access 4:5937–5947CrossRefGoogle Scholar
  64. 64.
    Zhang Y, Wang S, Yang XJ, Dong ZC, Liu G, Phillips P, Yuan TF (2015) Pathological brain detection in MRI scanning by wavelet packet Tsallis entropy and fuzzy support vector machine. SpringerPlus 4(1):1–16CrossRefGoogle Scholar
  65. 65.
    Zhang Y, Zhang Y, Lv YD, Hou XX, Liu FY, Jia WJ, Yang MM, Phillips P, Wang S (2017) Alcoholism detection by medical robots based on Hu moment invariants and predator–prey adaptive-inertia chaotic particle swarm optimization. Computers & Electrical EngineeringGoogle Scholar
  66. 66.
    Zhao G, Shen Z, Miao C, Man Z (2009) On improving the conditioning of extreme learning machine: a linear case. In: 7th international conference on information, communications and signal processing, ICICS. IEEE, pp 1–5Google Scholar
  67. 67.
    Zhou X, Wang S, Xu W, Ji G, Phillips P, Sun P, Zhang Y (2015) Detection of pathological brain in MRI scanning based on wavelet-entropy and naive Bayes classifier. In: Bioinformatics and biomedical engineering, pp 201–209Google Scholar
  68. 68.
    Zhu QY, Qin AK, Suganthan PN, Huang GB (2005) Evolutionary extreme learning machine. Pattern Recogn 38(10):1759–1763CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Deepak Ranjan Nayak
    • 1
  • Ratnakar Dash
    • 1
  • Banshidhar Majhi
    • 1
  1. 1.Pattern Recognition Lab, Department of Computer Science and EngineeringNational Institute of TechnologyRourkelaIndia

Personalised recommendations