Multimedia Tools and Applications

, Volume 78, Issue 7, pp 9033–9050 | Cite as

Medical image resolution enhancement for healthcare using nonlocal self-similarity and low-rank prior

  • Hui LiuEmail author
  • Qiang Guo
  • Guangli Wang
  • B. B. Gupta
  • Caiming Zhang


Medical images have high information redundancy, which can be used to improve image analysis and visualization for purpose of healthcare. In order to recover a high-resolution (HR) image from its low-resolution (LR) counterpart, this paper proposes a resolution enhancement method by using the nonlocal self-similar redundancy and the low-rank prior. The proposed method consists of three main steps. First, an initial HR image is generated by nonlocal interpolation, which is based on the self-similarity of medical images. Next, the low-rank minimum variance estimator is exploited to reconstruct the HR image. At last, we iteratively apply the subsampling consistency constraint and perform the low-rank reconstruction to refine the reconstructed HR result. Experimental results conducted on MR and CT images demonstrate that the proposed method outperforms conventional interpolation methods and is competitive with the current stat-of-the-art methods in terms of both quantitative metrics and visual quality.


Resolution enhancement Low rank approximation Minimum variance estimation Nonlocal self-similarity Healthcare 



This work is partially supported by National Natural Science Foundation (61572286, 61332015, and 61472220), Shandong Provincial Key Research and Development Plan (2017CXGC1504), Natural Science Foundation of Shandong Province (2016ZRB01143), and Fostering Project of Dominant Discipline an Talent Team of Shandong Province Higher Education. The authors also gratefully acknowledge the helpful comments and suggestions of the anonymous reviewers, which have improved the presentation significantly.


  1. 1.
    Barnes C, Shechtman E, Finkelstein A, Goldman DB (2009) PatchMatch: A randomized correspondence algorithm for structural image editing. ACM Trans Graphics 28(3):Article 24CrossRefGoogle Scholar
  2. 2.
    Baudes A, Coll B, Morel JM (2005) A review of image denoising algorithms, with a new one. Multiscale Model Simul 4(2):490–530MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Cai JF, Candes EJ, Shen Z (2010) A singular value thresholding algorithm for matrix completion. SIAM J Optim 20(4):1956–1982MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Cai JF, Osher S (2013) Fast singular value thresholding without singular value decomposition. Methods Appl Anal 20(4):335–352MathSciNetzbMATHGoogle Scholar
  5. 5.
    Candes EJ, Recht B (2009) Exact low-rank matrix completion via convex optimization. Found Comput Math 9(6):717–772MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Cao F, Cai M, Tan Y (2015) Image interpolation via low-rank matrix completion and recovery. IEEE Trans Circ Syst Video Technol 25(8):1261–1270CrossRefGoogle Scholar
  7. 7.
    Collins DL, Zijdenbos AP, Kollokian V et al (1998) Design and construction of a realistic digital brain phantom. IEEE Trans Med Imaging 17(3):463–468CrossRefGoogle Scholar
  8. 8.
    Dong W, Zhang L, Shi G, Wu X (2009) Nonlocal back-projection for adaptive image enlargement. In: Proceeding of IEEE International Conference on Image Processing, pp 349–352Google Scholar
  9. 9.
    Dong W, Zhang L, Lukac R, Shi G (2013) Sparse representation based image interpolation with non-local autoregressive modeling. IEEE Trans Image Process 22(4):1382–1394MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Guo Q, Zhang C, Liu Q, Zhang Y, Shen X (2014) Image interpolation based on nonlocal self-similarity. ScienceAsia 40(2):168–174CrossRefGoogle Scholar
  11. 11.
    Guo Q, Zhang C, Zhang Y, Liu H, Shen X (2015) Low-rank image denoising based on minimum variance estimator. J Comput-Aided Des Comput Graph 27(12):2237–2246. In ChineseGoogle Scholar
  12. 12.
    Guo Q, Zhang C, Zhang Y, Liu H (2016) An efficient SVD-based method for image denoising. IEEE Trans Circ Syst Video Technol 26(5):868–880CrossRefGoogle Scholar
  13. 13.
    Guo Q, Gao S, Zhang X, Yin Y, Zhang C (2017) Patch-based image inpainting via two-stage low rank approximation. IEEE Trans Visualization and Computer Graphics, acceptedGoogle Scholar
  14. 14.
    Hardie R (2007) A fast image super resolution algorithm using an adaptive wiener filter. IEEE Trans Image Process 16(12):2953–2964MathSciNetCrossRefGoogle Scholar
  15. 15.
    He K, Sun J (2012) Computing nearest-neighbor fields via propagation-assisted kd-trees. In: Proceedings of IEEE International Conference on Computer Vision, pp 111–118Google Scholar
  16. 16.
    Hossain MS (2016) Patient state recognition system for healthcare using speech and facial expression. J Med Syst 40(12):272:1–272:8CrossRefGoogle Scholar
  17. 17.
    Hossain MS, Muhammad G (2016) Cloud-assisted industrial internet of things (IIoT)-enabled framework for health monitoring. Comput Netw 101:192–202CrossRefGoogle Scholar
  18. 18.
    Hossain MS, Muhammad G (2016) Healthcare big data voice pathology assessment framework. IEEE Access 4(1):7806–7815CrossRefGoogle Scholar
  19. 19.
    Hung KK, Siu Wc (2012) Single image super-resolution using iterative Wiener filter. In: Proceedings of IEEE International Conference on Acoustics Speech, Signal Processing, pp 1269–1272Google Scholar
  20. 20.
    Irani M, Peleg S (1993) Motion analysis for image enhancement: resolution, occlusion, and transparency. J Visual Commun Image Represent 4(4):324–335CrossRefGoogle Scholar
  21. 21.
    Jafari-Khouzani K (2014) MRI upsampling using feature-based nonlocal means approach. IEEE Trans Med Imaging 33(10):1969–1985CrossRefGoogle Scholar
  22. 22.
    Korman S, Avidan S (2011) Coherency sensitive hashing. In: Proceedings of IEEE International Conference on Computer Vision, pp 1607–1614Google Scholar
  23. 23.
    Kwan RKS, Evans AC, Pike GB (1999) MRI simulation-based evaluation of image-processing and classification methods. IEEE Trans Med Imaging 18(11):1085–1097CrossRefGoogle Scholar
  24. 24.
    Larsen RM (1998) Lanczos bidiagonalization with partial reorthogonalization. DAIMI Rep Ser 537:1–101Google Scholar
  25. 25.
    Lehmann TM, Gonner C, Spitzer K (1999) Survey: interpolation methods in medical image processing. IEEE Trans Med Imaging 18(11):1049–1075CrossRefGoogle Scholar
  26. 26.
    Li X, Orchard MT (2001) New edge-directed interpolation. IEEE Trans Image Process 10(10):1521–1527CrossRefGoogle Scholar
  27. 27.
    Li J, Huang XY, Li JW, Chen XF, Xiang Y (2014) Securely outsourcing attribute-based encryption with checkability. IEEE Trans Parallel Distrib Syst 25(8):2201–2210CrossRefGoogle Scholar
  28. 28.
    Li J, Chen XF, Li MQ, Li JW, Lee P, Lou WJ (2014) Secure deduplication with efficient and reliable convergent key management. IEEE Trans Parallel Distrib Syst 25(6):1615–1625CrossRefGoogle Scholar
  29. 29.
    Li P, Li J, Huang Z, Li T, Gao CZ, Yiu SM, Chen K (2017) Multi-key privacy-preserving deep learning in cloud computing. Future Generation Computer Systems. CrossRefGoogle Scholar
  30. 30.
    Li P, Li J, Huang Z, Gao CZ, Chen WB, Chen K (2017) Privacy-preserving outsourced classification in cloud computing. Cluster Computing, CrossRefGoogle Scholar
  31. 31.
    Liu H, Geng F, Guo Q, Zhang C, Zhang C (2017) A fast weak-supervised pulmonary nodule segmentation method based on modified self-adaptive FCM algorithm. Soft Computer, acceptedGoogle Scholar
  32. 32.
    Manjon JV, Coupe P, Buades A, Collins DL, Robles M (2010) MRI superresolution using self-similarity and image priors. Int J Biomed Imaging 2010:425891CrossRefGoogle Scholar
  33. 33.
    Manjon JV, Coupe P, Buades A, Fonov V, Collins DL (2010) Non-local MRI upsampling. Med Image Anal 14:784–792CrossRefGoogle Scholar
  34. 34.
    Ning Q, Chen K, Yi L (2013) Image super-resolution via analysis sparse prior. IEEE Signal Process Lett 20(4):399–402CrossRefGoogle Scholar
  35. 35.
    Olshansky SJ, Carnes BA, Yang YC et al. (2016) The future of smart health. Computer 49(11):14–21CrossRefGoogle Scholar
  36. 36.
    Pan Z, Yu J, Huang H, Hu S (2013) Super-resolution based on compressive sensing and structural self-similarity for remote sensing image. IEEE Trans Geosci Remote Sens 51(9):4864–4876CrossRefGoogle Scholar
  37. 37.
    Park SC, Park MK, Kang MG (2003) Super-resolution image reconstruction: A technical overview. IEEE Signal Process Mag 20(3):21–36CrossRefGoogle Scholar
  38. 38.
    Ren C, He X, Teng Q, Wu Y, Nguyen TQ (2016) Single image super-resolution using local geometric duality and non-local similarity. IEEE Trans Image Process 25(5):2168–2183MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Schaeffer H, Osher S (2013) A low patch-rank interpretation of texture. SIAM J Imaging Sci 6(1):226–262MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Shi F, Cheng J, Wang L, Yap PT, Shen D (2015) LRTV: MR image super-resolution with low-rank and total variation regularizations. IEEE Trans Med Imaging 34(12):2459–2466CrossRefGoogle Scholar
  41. 41.
    Thevenaz P, Blu T, Unser M (2000) Interpolation revisited. IEEE Trans Med Imaging 19(7):739–758CrossRefGoogle Scholar
  42. 42.
    Tomasi C, Manduchi R (1998) Bilateral fitlering for gray and color images. In: Proceedings of IEEE International Conference on Computer Vision, pp 836–846Google Scholar
  43. 43.
    Trinh DH, Luong M, Dibos F, Rocchisani JM, Pham CD, Nguyen TQ (2014) Novel example-based method for super-resolution and denoising of medical images. IEEE Trsns Image Process 23(4):1882–1895MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13 (4):600–612CrossRefGoogle Scholar
  45. 45.
    Yang J, Wright J, Huang TS, Ma Y (2010) Image super resolution via sparse representation. IEEE Trans Image Process 19(11):2861–2873MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Yang MC, Wang YCF (2013) A self-learning approach to single image super-resolution. IEEE Trans Multimed 15(3):498–508CrossRefGoogle Scholar
  47. 47.
    Yap PT, An H, Chen Y, Shen D (2014) Fiber-driven resolution enhancement of diffusion-weighted images. NeuroImage 84(1):939–950CrossRefGoogle Scholar
  48. 48.
    Zhang L, Wu X (2006) An edge-guided image interpolation algorithm via directional filtering and data fusion. IEEE Trans Image Process 15(8):2226–2238CrossRefGoogle Scholar
  49. 49.
    Zhang K, Gao X, Tao D, Li X (2012) Single image super-resolution with non-local means and steering kernel regression. IEEE Trans Image Process 21 (11):4544–4556MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Zhang Y, Wu G, Yap PT, Feng Q, Liu J, Chen W, Shen D (2012) Hierarchical patch-based sparse representation-A new approach for resolution enhancement of 4D-CT lung data. IEEE Trans Med Imaging 31(11):1993–2005CrossRefGoogle Scholar
  51. 51.
    Zhang Y, Yap PT, Wu G, Feng Q, Liu J, Chen W, Shen D (2013) Resolution enhancement of lung 4D-CT data using multiscale interphase iterative nonlocal means. Med Phys 40(5):051916CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Hui Liu
    • 1
    • 2
    Email author
  • Qiang Guo
    • 1
    • 2
  • Guangli Wang
    • 3
  • B. B. Gupta
    • 4
  • Caiming Zhang
    • 2
    • 5
  1. 1.Department of Computer Science and TechnologyShandong University of Finance and EconomicsShandongChina
  2. 2.Shandong Provincial Key Laboratory of Digital Media TechnologyShandongChina
  3. 3.Shandong Provincial Qianfoshan HospitalShandongChina
  4. 4.Department of Computer EngineeringNational Institute of Technology KurukshetraKurukshetraIndia
  5. 5.Department of Computer Science and TechnologyShandong UniversityShandongChina

Personalised recommendations