Advertisement

Multimedia Tools and Applications

, Volume 78, Issue 1, pp 99–124 | Cite as

Textile fabric defect detection based on low-rank representation

  • Peng LiEmail author
  • Junli Liang
  • Xubang Shen
  • Minghua Zhao
  • Liansheng Sui
Article

Abstract

In this paper, we propose a novel and robust fabric defect detection method based on the low-rank representation (LRR) technique. Due to the repeated texture structure we model a defects-free fabric image as a low-rank structure. In addition, because defects, if exist, change only the texture of fabric locally, we model them with a sparse structure. Based on the above idea, we represent a fabric image into the sum of a low-rank matrix which expresses fabric texture and a sparse matrix which expresses defects. Then, the LRR method is applied to obtain the corresponding decomposition. Especially, in order to make better use of low-rank structure characteristics we propose LRREB (low-rank representation based on eigenvalue decomposition and blocked matrix) method to improve LRR. LRREB is implemented by dividing a image into some corresponding blocked matrices to reduce dimensions and applying eigen-value decomposition (EVD) on blocked matrix instead of singular value decomposition (SVD) on original fabric image, which improves the accuracy and efficiency. No training samples are required in our methods. Experimental results show that the proposed fabric defect detection method is feasible, effective, and simple to be employed.

Keywords

Fabric defect detection Eigen-value decomposition (EVD) Low-Rank Representation (LRR) Sparse matrix Singular value decomposition (SVD), low-rank representation based on eigenvalue decomposition and blocked matrix (LRREB) 

References

  1. 1.
    Abavisani M, Patel VM (2018) Multimodal sparse and low-rank subspace clustering. Inf Fusion 39:168–177CrossRefGoogle Scholar
  2. 2.
    Allili MS, Baaziz N, Mejri M (2014) Texture Modeling Using Contourlets and Finite Mixtures of Generalized Gaussian Distributions and Applications. IEEE Trans Multimed 16(3):772–784CrossRefGoogle Scholar
  3. 3.
    Bai X, Fang Y, Lin W, Wang L, Ju B (2014) Saliency-Based Defect Detection in Industrial Images by Using Phase Spectrum. IEEE Trans Ind Inf 10(4):2135–2145CrossRefGoogle Scholar
  4. 4.
    Basibuyuk K, Coban K, Ertuzun A (2008) Model based defect detection problem: particle filter approach. In: Proceeding of 3rd International Symposium on Communications, Control and Signal Processing, Malta, pp 348–351Google Scholar
  5. 5.
    Bissi L, Baruffa G, Placidi P, Ricci E, Scorzoni A, Valigi P (2013) Automated defect detection in uniform and structured fabrics using Gabor filters and PCA. Elsevier J Vis Commun Image Represent 24:838–845CrossRefGoogle Scholar
  6. 6.
    Cai J, Cande’s E, Shen Z (2010) A Singular Value Thresholding Algorithm for Matrix Completion. SIAM J Optim 20(4):1956–1982MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cande’s E, Plan Y (2010) Matrix Completion with Noise. Proc IEEE 98(6):925–936CrossRefGoogle Scholar
  8. 8.
    Cande’s E, Li X, Ma Y, Wright J (2009) Robust Principal Component Analysis?. J. ACM 58(11);1–37Google Scholar
  9. 9.
    Cao J, Zhang J, Wen Z, Wang N, Liu X (2017) Fabric defect inspection using prior knowledge guided least squares regression. Multimedia Tools Appl 76:4141–4157CrossRefGoogle Scholar
  10. 10.
    Chan C-h, Pang GKH (2000) Fabric Defect Detection by Fourier Analysis. IEEE Trans Ind Appl 36(5):1267–1276CrossRefGoogle Scholar
  11. 11.
    Chandra J, Banerjee P, Datta A (2011) Singular value decomposition method for the detection of defects in woven fabric refined by morphological operation. In: Conference of Recent Advances in Intelligent Computational Systems, Trivandrum, pp 541–544Google Scholar
  12. 12.
    Chen S, Feng J (2010) Research on detection of fabric defects based on singular value decomposition. In: Proceeding of IEEE International Conference on Information and Automation, Harbin, pp 857–860Google Scholar
  13. 13.
    Chetverikov D, Hanbury A (2002) Finding defects in texture using regularity and localorientation. Pattern Recogn 35:2165–2180CrossRefGoogle Scholar
  14. 14.
    Eckstein J, Bertsekas D (1992) On the Douglas-Rachford Splitting Method and the Proximal Point Algorithm for Maximal Monotone Operators. Math Programming 55:293–318MathSciNetCrossRefGoogle Scholar
  15. 15.
    Elhamifar E, Vidal R (2013) Sparse Subspace Clustering: Algorithm, Theory, and Applications. IEEE Trans Pattern Anal Mach Intell 35(11):2765–2781CrossRefGoogle Scholar
  16. 16.
    Feuillet V, Ibos L, Fois M, Dumoulin J, Candau Y (2012) Defect detection and characterization in composite materials using square pulse thermography coupled with singular value decomposition analysis and thermal quadrupole modeling. Elsevier NDT & E Int 51:58–67CrossRefGoogle Scholar
  17. 17.
    Ghorai S, Anirban M, Gangadaran M, Dutta PK (2013) Automatic Defect Detection on Hot-Rolled Flat Steel Products. IEEE Trans Instrum Meas 62(3):612–621CrossRefGoogle Scholar
  18. 18.
    Hong-gang B, Wang J, Huang X-b (2009) Fabric defect detection based on multiple fractal features and support vector data description. Elsevier Eng Appl Artif Intel 22:224–235CrossRefGoogle Scholar
  19. 19.
    Jiang J, Cheng J, Tao D (2012) Color Biological Features-Based Solder Paste Defects Detection and Classification on Printed Circuit Boards. IEEE Trans Compon Packag Manuf Technol 2(9):1536–1544CrossRefGoogle Scholar
  20. 20.
    Kim J, Sim J, Kim C (2015) Video Deraining and Desnowing Using Temporal Correlation and Low-Rank Matrix Completion. IEEE Trans Image Process 24(9):2658–2670MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kumar A (2008) Computer-Vision-Based Fabric Defect Detection: A Survey. IEEE Trans Ind Electron 55(1):346–363CrossRefGoogle Scholar
  22. 22.
    Kumar A, Pang GKH (2002) Defect Detection in Textured Materials Using Gabor Filters. IEEE Trans Ind Appl 38(2):425–440CrossRefGoogle Scholar
  23. 23.
    Kumar A, Pang GKH (2002) Defect Detection in Textured Materials Using Optimized Filters. IEEE Trans Syst Man Cybern Part B Cybern 32(5):553–570CrossRefGoogle Scholar
  24. 24.
    Lee Y, Lee J (2014) Accurate Automatic Defect Detection Method Using Quadtree Decomposition on SEM Images. IEEE Trans Semicond Manuf 27(2):223–231CrossRefGoogle Scholar
  25. 25.
    Li W-C, Tsai D-M (2011) Defect Inspection in Low-Contrast LCD Images Using Hough Transform-Based Nonstationary Line Detection. IEEE Trans Ind Inf 7(1):136–147MathSciNetCrossRefGoogle Scholar
  26. 26.
    Lin Z, Chen M, Ma Y (2009) The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices. UIUC Technical Report UILU-ENG-09-2215Google Scholar
  27. 27.
    Liu H, Member WZ, Kuang Q, Cao L, Gao B (2010) Defect Detection of IC Wafer Based on Spectral Subtraction. IEEE Trans Semicond Manuf 23(1):141–147CrossRefGoogle Scholar
  28. 28.
    Liu G, Lin Z, Yu Y (2010) Robust Subspace Segmentation by Low-Rank Representation. In: Proceeding of International Conference on Machine Learning, Haifa, Israel, pp 663–670Google Scholar
  29. 29.
    Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2013) Robust Recovery of Subspace by Low-Rank Representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184CrossRefGoogle Scholar
  30. 30.
    Liu X, Zhao G, Yao J, Qi C (2015) Background Subtraction Based on Low-Rank and Structured Sparse Decomposition. IEEE Trans Image Process 24(8):2502–2514MathSciNetCrossRefGoogle Scholar
  31. 31.
    Mak K, Tian X (2010) Textile Fabric Flaw Detection Using Singular Value Decomposition. In: Conference of Green Circuits and Systems (ICGCS), Shanghai, pp 381–386Google Scholar
  32. 32.
    Mak KL, Peng P, Yiu KFC (2009) Fabric defect detection using morphological filters. Elsevier Image Vision Comput 27:1585–1592CrossRefGoogle Scholar
  33. 33.
    Ngan HYT, Pang GKH, Yung NHC (2008) Motif-based defect detection for patterned fabric. Pattern Recogn 41:1878–1894CrossRefGoogle Scholar
  34. 34.
    Ngan H, Pang G, Yung N (2010) Performance Evaluation for Motif-Based Patterned Texture Defect Detection. IEEE Trans Autom Sci Eng 7(1):58–72CrossRefGoogle Scholar
  35. 35.
    Ngan HYT, Pang GKH, Yung NHC (2010) Ellipsoidal decision regions for motif-based patterned fabric defect detection. Pattern Recogn 43:2132–2144CrossRefGoogle Scholar
  36. 36.
    Ngan HYT, Pang GKH, Yung NHC (2011) Automated fabric defect detection—A review. Elsevier Image Vision Comput 29:442–458CrossRefGoogle Scholar
  37. 37.
    Pan Z, Chen L, Li W et al (2013) A Novel Defect Inspection Method for Semiconductor Wafer Based on Magneto-Optic Imaging. J Low Temp Phys 170(5–6):436–441CrossRefGoogle Scholar
  38. 38.
    Patel VM, Van Nguyen H, Vidal R (2015) Latent Space Sparse and Low-Rank Subspace Clustering. IEEE J Sel Top Sign Proces 9:691–701CrossRefGoogle Scholar
  39. 39.
    Peng Y, Ganesh A, Wright J, Xu W, Ma Y (2012) RASL: Robust Alignment by Sparse and Low-Rank Decomposition for Linearly Correlated Images. IEEE Trans Pattern Anal Mach Intell 34(11):2233–2246CrossRefGoogle Scholar
  40. 40.
    Rahejaa JL, Kumarb S, Chaudharyc A (2013) Fabric defect detection based on GLCM and Gabor filter: A comparison. Elsevier Optik 124:6469–6474CrossRefGoogle Scholar
  41. 41.
    Sezer OG, Ercil A, Ertuzun A (2007) Using perceptual relation of regularity and anisotropy in the texture with independent component model for defect detection. Pattern Recogn 40(1):121–133CrossRefGoogle Scholar
  42. 42.
    Shen J, Yang X Jia Y (2011) Intrinsic images using optimization. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp 3481–3487Google Scholar
  43. 43.
    Tsai D-M, Chiang I-Y, Tsai Y-H (2012) A Shift-Tolerant Dissimilarity Measure for Surface Defect Detection. IEEE Trans Ind Inf 8(1):128–137CrossRefGoogle Scholar
  44. 44.
    Tsai D-M, Member S-CW, Chiu W-Y (2013) Defect Detection in Solar Modules Using ICA Basis Images. IEEE Trans Ind inf 9(1):122–131CrossRefGoogle Scholar
  45. 45.
    Wang X, Mirmehdi M (2012) Archive Film Defect Detection and Removal: An Automatic Restoration Framework. IEEE Trans Image Process 21(8):3757–3769MathSciNetCrossRefGoogle Scholar
  46. 46.
    Wang C-C, Jiang BC, Lin J-Y, Chu C-C (2013) Machine Vision-Based Defect Detection in IC Images Using the Partial Information Correlation Coefficient. IEEE Trans Semicond Manuf 26(3):378–384CrossRefGoogle Scholar
  47. 47.
    Win M, Bushroa A, Hassan M, Hilman N, Ide-Ektessabi A (2015) A Contrast Adjustment Thresholding Method for Surface Defect Detection Based on Mesoscopy. IEEE Trans Ind Inf 11(3):642–649CrossRefGoogle Scholar
  48. 48.
    Workgroup on Texture Analysis of DFG. TILDA Textile Texture Database, http://lmb.informatik.uni-freiburg.de/research/dfg-texture/tilda
  49. 49.
    Xie X, Mirmehdi M (2007) TEXEMS: Texture Exemplars for Defect Detection on Random Textured Surfaces. IEEE Trans Pattern Anal Mach Intell 29(8):1454–1464CrossRefGoogle Scholar
  50. 50.
    Xu H, Caramanis C, Sanghavi S (2010) Robust PCA via Outlier Pursuit. Syst Adv Neural Inf Proces Syst 23:2496–2504zbMATHGoogle Scholar
  51. 51.
    Yang J, Yin W, Zhang Y, Wang Y (2009) A Fast Algorithm for Edge-Preserving Variational Multichannel Image Restoration. SIAM J Imag Sci 2(2):569–592MathSciNetCrossRefGoogle Scholar
  52. 52.
    Yang X, Zhang T, Xu C (2013) Locality discriminative coding for image classification. ICIMCSGoogle Scholar
  53. 53.
    Yang X, Zhang T, Xu C Xu M (2013) Graph-Guided Fusion Penalty Based Sparse Coding for Image Classification. PCM 2013, LNCS 8294, pp 475–484Google Scholar
  54. 54.
    Yang X, Zhang T, Changsheng X (2015) Cross domain feature learning in multimedia. IEEE Trans Multimedia 17(1):64–78CrossRefGoogle Scholar
  55. 55.
    Yin M, Cai S, Gao J (2013) Robust Face Recognition Via Double Low-Rank Matrix Recovery For Feature Extraction. In: Proceeding of IEEE International Conference on Image Processing, Melbourne, pp 3770–3774Google Scholar
  56. 56.
    Zhang Y (2011) Recent Advances in Alternating Direction Methods: Practice and Theory. Tutorial in The 5th Sino-Japanese Optimization Meeting Beijing, China, September 28Google Scholar
  57. 57.
    Zhang X (2013) Gradient Analysis and Optimization. In: Matrix Analysis and Applications, 2nd ed., Tsinghua University press, Beijing, pp 193–284Google Scholar
  58. 58.
    Zhang X (2013) Singular Value Decomposition. In: Matrix Analysis and Applications, 2nd ed., Tsinghua University press, Beijing, pp 285–234Google Scholar
  59. 59.
    Y.H. Zhang C.W.M. Yuen, W.K. Wong (2010) A New Intelligent Fabric Defect Detection and Classification System Based on Gabor Filter and Modified Elman. In: proceeding of The 2nd IEEE international conference on Advanced Computer Control, Shenyang, vol 2. pp 652–656Google Scholar
  60. 60.
    Zhang T, Ghanem B, Liu S, Xu C, Ahuja N (2013) Low-Rank Sparse Coding for Image Classification. IEEE International Conference on Computer Vision (ICCV) pp 281–288Google Scholar
  61. 61.
    Zhang T, et al (2015) Structural Sparse Tracking. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp 150–158Google Scholar
  62. 62.
    Zhang T, Liu S, Ahuja N, Yang M-H, Ghanem B (2015) Robust Visual Tracking Via Consistent Low-Rank Sparse Learning. Int J Comput Vis (IJCV) 111:171–190CrossRefGoogle Scholar
  63. 63.
    Zhao Y, Yang J (2015) Hyperspectral Image Denoising via Sparse Representation and Low-Rank Constraint. IEEE Trans Geosci Remote Sens 53(1):296–308CrossRefGoogle Scholar
  64. 64.
    Zhu Y, Huang D, De La Torre F, et al (2014) Complex non-rigid motion 3d reconstruction by union of subspaces. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 1542–1549Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Peng Li
    • 1
    • 2
    Email author
  • Junli Liang
    • 3
  • Xubang Shen
    • 1
  • Minghua Zhao
    • 2
  • Liansheng Sui
    • 2
  1. 1.School of MicroelectronicsXidian UniversityXi’anChina
  2. 2.School of Computer Science and EngineeringXi’an University of TechnologyXi’anChina
  3. 3.School of Electronics and InformationNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations