Multimedia Tools and Applications

, Volume 78, Issue 5, pp 5155–5167 | Cite as

Application of hyperspectral image anomaly detection algorithm for Internet of things

  • Xinjian WangEmail author
  • Guangchun Luo
  • Ling Tian


Hyperspectral image(HSI) anomaly detection, as one of the hottest topics in current remote sensing information processing and image processing,has important theoretical value and has been widely used in military and civilian applications. Anomaly detection aims to detect and label small man-made abnormal targets or objects without any prior knowledge. In this paper, we proposed a segmented three-order Tucker decomposition for HSI anomaly detection. There are three major steps:1) the original HSI data is divided along the three dimensions into a grid of multiple of small-sized sub-tensors. 2)Tucker decomposition followed by anomaly detection algorithm is applied onto each sub-tensor. 3) the detection results from those sub-tensors are fused. Experiments reveal that the proposed method outperforms other current anomaly detectors with better detection performance. Finally, we introduce the application of hyperspectral image anomaly detection algorithm in the Internet of things(IOT).


Hyperspectral imagery (HSI) Anomaly detection Segmented three-order Tucker decomposition Internet of things(IOT) 


  1. 1.
    Andersson CA, Henrion R (1999) A general algorithm for obtaining simple structure of core arrays in N-way PCA with application to fluorimetric data. Comput Statist Data Anal 31:255–278CrossRefGoogle Scholar
  2. 2.
    Bioucas-Dias JM, Plaza A, Camps-Valls G, Scheunders P, Nasrabadi N, Chanussot J (2013) Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci Remote Sens Mag 1(2):6–36CrossRefGoogle Scholar
  3. 3.
    Carlotte MJ (2005) A cluster-based approach for detecting man-made objects and changes in imagery. IEEE Trans Geosci Remote Sens 43(2):374–387CrossRefGoogle Scholar
  4. 4.
    Chang CI, Chiang SS (2002) Anomaly detection and classification for hyperspectral imagery. IEEE Trans Geosci Remote Sens 40(1):1314–1325CrossRefGoogle Scholar
  5. 5.
    Chang CI, Du Q (2004) Estimation of number of spectrally distinct signal sources in hyperspectral imagery. IEEE Trans Geosci Remote Sens 42(3):608–619CrossRefGoogle Scholar
  6. 6.
    Chen SY, Yang S, Kalpakis K, Chang CI (2013) Low-rank decomposition-based anomaly detection, in Proc. SPIE Def., Secur., and Sens. Intern Soc Optics Photonics 87430NGoogle Scholar
  7. 7.
    Du B, Zhang L (2011) Random selection based anomaly detector for hyperspectral imagery. IEEE Trans Geosci Remote Sens 49(5):1578–1585CrossRefGoogle Scholar
  8. 8.
    Fowler JE, Du Q (2012) Anomaly detection and reconstruction from random projections. IEEE Trans Image Process 21(1):184–195MathSciNetCrossRefGoogle Scholar
  9. 9.
    Govender M, Chetty K, Bulcock H (2007) A review of hyperspectral remote sensing and its application in vegetation and water resource studies. Water SA (Pretoria) 33:145–151Google Scholar
  10. 10.
    Gupta A, Oberoi A (2015) A comparative analysis of tensor decomposition models using hyperspectral image. Inter J of Comput Sci Trends and Tech (IJCST) 3(2):5–11Google Scholar
  11. 11.
    Hsueh M, Chang CI (2004) Adaptive causal anomaly detection for hyperspectral imagery. In IEEE Intern Geosci Remote Sens Symp 5:3222–3224Google Scholar
  12. 12.
    Jia X (1996) Classification techniques for hyperspectral remote sensing image data, Ph.D. dissertation, Sch. Elect. Eng., Univ. College, ADFA, Univ. New South WalesGoogle Scholar
  13. 13.
    Jia X, Richards JA (1994) Efficient maximum likelihood classification for imaging spectrometer data sets. IEEE Trans Geosci Remote Sensing 32:274–281CrossRefGoogle Scholar
  14. 14.
    Kerekes J (2008) Receiver operating characteristic curve confidence intervals and regions. IEEE Geosci Remote Sens Lett 5(2):251–255CrossRefGoogle Scholar
  15. 15.
    Khazai S, Homayouni S, Safari A, Mojaradi B (2011) Anomaly detection in hyperspectral images based on an adaptive support vector method. IEEE Geosci Remote Sens Lett 8(7):646–650CrossRefGoogle Scholar
  16. 16.
    Kolda TG, Bader BW (2009) Tensor decompositions and applications. SIAM Rev 51(3):455–500MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lathauwer LD (1997) Signal processing based on multilinear algebra. Katholike University Leuven, LeuvenGoogle Scholar
  18. 18.
    Li W, Du Q (2015) Collaborative representation for hyperspectral anomaly detection. IEEE Trans Geosci Remote Sens 53(3):1463–1474CrossRefGoogle Scholar
  19. 19.
    Li J, Zhang H, Zhang L, Ma L (2015) Hyperspectral anomaly detection by the use of background joint sparse representation. IEEE J Sel Topics Appl Earth Observ Remote Sens 8(6):2523–2533CrossRefGoogle Scholar
  20. 20.
    Matteoli S (2013) Models and methods for automated background density estimation in hyperspectral anomaly detection. IEEE Trans Geosci Remote Sens 51(5):2837–2852CrossRefGoogle Scholar
  21. 21.
    Matteoli S, Acito N, Diani M, (2009) Local approach to orthogonal subspace-based target detection in hyperspectral images,” in Proc. of IEEE WHISPERS '09, 1–4Google Scholar
  22. 22.
    Matteoli S, Diani M, Corsini G (2010) A tutorial overview of anomaly detection in hyperspectral images. IEEE Aerosp Electron Syst Mag 25(7):5–28CrossRefGoogle Scholar
  23. 23.
    Plaza A, Benediktsson JA, Boardman JW, Brazile J, Bruzzone L, Camps-Valls G et al (2009) Recent advances in techniques for hyperspectral image processing. Remote Sens Environ 113:S110–S122CrossRefGoogle Scholar
  24. 24.
    Reed IS, Yu X (1990) Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution. IEEE Trans Acoust Speech Signal Process 38(4):1760–1770CrossRefGoogle Scholar
  25. 25.
    Schaum A (2009) Advanced hyperspectral detection based on elliptically contoured distribution models and operator feedback, in Proc. IEEE Appl. Imagery Pattern Recognit, Workshop (AIPR)Google Scholar
  26. 26.
    Schweizer SM, Moura JMF (2000) Hyperspectral imagery: clutter adaption in anomaly detection. IEEE Trans Inf Theory 46(5):1855–1871CrossRefGoogle Scholar
  27. 27.
    Stefanou MS, Kerekes JP (2009) A method for assessing spectral image utility. IEEE Trans Geosci Remote Sens 47(6):1698–1706CrossRefGoogle Scholar
  28. 28.
    Stein DWJ, Beaven SG, Hoff LE, Winter EM, Schaum AP, Stocker AD (2002) Anomaly detection from hyperspectral imagery. IEEE Signal Process Mag 19(1):58–69CrossRefGoogle Scholar
  29. 29.
    Zhang X, Wen G, Dai W (2016) A tensor decomposition-based anomaly detection algorithm for hyperspectral image[J]. IEEE Trans Geosci Remote Sens 54(10):1–20CrossRefGoogle Scholar
  30. 30.
    Zhao R, Du B, Zhang L (2014) A robust nonlinear hyperspectral anomaly detection approach. IEEE J Sel Topics Appl Earth Observ Remote Sens 7(4):1227–1234CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Computer Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations