Advertisement

Multimedia Tools and Applications

, Volume 77, Issue 5, pp 6095–6116 | Cite as

Frame-rate conversion detection based on periodicity of motion artifact

  • Dae-Jin Jung
  • Heung-Kyu Lee
Article
  • 245 Downloads

Abstract

With the advances in digital video technology, it is becoming easier to forge the digital video without introducing any artificial visual trace. The temporal domain of the digital videos is one of the main targets of video tampering, and video frame-rate conversion is one of the common operations for temporal video tampering such as temporal splicing and video speed adjustment. This operation necessarily accommodates temporal interpolation that introduces the periodic motion artifact on the motion trajectories. In this paper, the frame-rate converted video detection method is proposed based on the motion artifact. The experimental results demonstrated the performance of the proposed method through the extensive experiments on 1300 original videos and 18,000 frame-rate converted videos in uncompressed and H.264/AVC formats. Especially, for the nearest neighbor and motion-based interpolation, the proposed method could detect over than 93.35% of the frame-rate up-converted videos while exhibiting 0.01 false positive rate.

Keywords

Digital forensics Video forensics Frame-rate conversion Motion artifact 

Notes

Acknowledgements

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) (No. 2016R1A2B2009595), and by the Institute for Information & communications Technology Promotion (IITP) grant funded by the Korean government (MSIP) (No.R0126-16-1024, Managerial Technology Development and Digital Contents Security of 3D Printing based on Micro Licensing Technology).

References

  1. 1.
    Ascenoso J, Brites C, Pereira F (2005) Improving frame interpolation with spatial motion smoothing for pixel domain distributed video coding. In: 5th EURASIP Conference on Speech and Image Processing, Multimedia communications and Sevices, pp. 1-6. CiteseerGoogle Scholar
  2. 2.
    Barron JL, Fleet DJ, Beauchemin SS (1994) Performance of optical flow techniques. Int J Comput Vis 12(1):43–77CrossRefGoogle Scholar
  3. 3.
    Bestagini P, Battaglia S, Milani S, Tagliasacchi M, Tubaro S (2013) Detection of temporal interpolation in video sequences. 2013 I.E. Int Conf Acoustics, Speech Signal Process: 3033–3037. doi  10.1109/ICASSP.2013.6638215
  4. 4.
    Bian S, Luo W, Huang J (2014) Detecting video frame-rate up-conversion based on periodic properties of inter-frame similarity. Multimed Tools Appl 72(1):437–451CrossRefGoogle Scholar
  5. 5.
    Bouguet JY (2013) Pyramidal implementation of the lucas kanade feature tracker description of the algorithm. Cit’e en: 69Google Scholar
  6. 6.
    Castagno R, Hassvisto P, Ramponi G (1996) A method for motion adaptive frame rate up-conversion. Circ Syst Video Technol, IEEE Trans 6(5):436–446CrossRefGoogle Scholar
  7. 7.
    Center for image processing research sequences. URL http://www.cipr.rpi.edu/resource/sequences/. (last access: Oct. 2015)
  8. 8.
    Chen M, Fridrich J, Goljan M, Luka’ˇs J (2007) Source digital camcorder identification using sensor photo response non-uniformity. In: Electronic Imaging 2007, pp. 65,051G– 65,051G. International Society for Optics and PhotonicsGoogle Scholar
  9. 9.
    Choi BD, Han JW, Kim CS, Ko SJ (2007) Motion-compensated frame interpolation using bilateral motion estimation and adaptive overlapped block motion compensation. Circ Syst Video Technol, IEEE Trans 17(4):407–416CrossRefGoogle Scholar
  10. 10.
    Choi BT, Lee SH, Ko SJ (2000) New frame rate up-conversion using bi-directional motion estimation. Consumer Electro, IEEE Trans 46(3):603–609CrossRefGoogle Scholar
  11. 11.
    Dash dataset at itec/alpen-adria-universita¨t klagenfurt. URL http://www-itec.uni-klu.ac.at/dash/?page_id=207. (last access: Oct. 2015)
  12. 12.
    Farid H (2009) Image forgery detection. Sign Process Mag, IEEE 26(2):16–25CrossRefGoogle Scholar
  13. 13.
    Farid H, Simoncelli EP (2004) Differentiation of discrete multidimensional signals. Imag Process, IEEE Trans 13(4):496–508MathSciNetCrossRefGoogle Scholar
  14. 14.
    Fridrich J (2009) Digital image forensics. Sign Process Mag, IEEE 26(2):26–37CrossRefGoogle Scholar
  15. 15.
    Gallagher AC (2005) Detection of linear and cubic interpolation in jpeg compressed images. In: Computer and Robot Vision, 2005. Proc 2nd Can Conf: 65–72. IEEEGoogle Scholar
  16. 16.
    Horn B (1986) Robot vision. MIT pressGoogle Scholar
  17. 17.
    Kirchner M (2008) Fast and reliable resampling detection by spectral analysis of fixed linear predictor residue. Proc 10th ACM Workshop Multimed Sec: 11–20. ACMGoogle Scholar
  18. 18.
    Luka’ˇs J, Fridrich J (2003) Estimation of primary quantization matrix in double compressed jpeg images. Proc Digit Forensic Res Workshop: 5–8Google Scholar
  19. 19.
    Mahdian B, Saic S (2007) On periodic properties of interpolation and their application to image authentication. In: Information Assurance and Security, 2007. IAS 2007. Third Int Symp: 439–446. IEEEGoogle Scholar
  20. 20.
    Milani S, Fontani M, Bestagini P, Barni M, Piva A, Tagliasacchi M, Tubaro S (2012) An overview on video forensics. APSIPA Trans Sign Inform Process 1:e2CrossRefGoogle Scholar
  21. 21.
    Paul RT (2011) Review of robust video watermarking techniques. IJCA Special Issue Computat Sci 3:90–95Google Scholar
  22. 22.
    Popescu AC, Farid H (2005) Statistical tools for digital forensics. In: Information Hiding, pp. 128–147. SpringerGoogle Scholar
  23. 23.
    Simoncelli EP (1999) Bayesian multi-scale differential optical flowGoogle Scholar
  24. 24.
    Stamm MC, Lin WS, Liu K (2012) Temporal forensics and anti-forensics for motion compensated video. Inform Forensics Sec, IEEE Trans 7(4):1315–1329CrossRefGoogle Scholar
  25. 25.
    Video trace library yuv video sequences. URL http://trace.eas.asu.edu/yuv/. (last access: Oct. 2015)
  26. 26.
    Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. Imag Process, IEEE Trans 13(4):600–612CrossRefGoogle Scholar
  27. 27.
    Wang W, Farid H (2007) Exposing digital forgeries in interlaced and deinterlaced video. Inform Forensics Sec, IEEE Trans 2(3):438–449CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Agency for Defense DevelopmentYusong-Gu DaejoenSouth Korea
  2. 2.School of ComputingKAISTYusong-Gu DaejoenSouth Korea

Personalised recommendations