VMVC: Verifiable multi-tone visual cryptography



Traditional k out of n threshold visual cryptography scheme is proposed to hide a secret image into n shares, where only k or more shares can visually reveal the secret image. Most of the previous state of art approaches on visual cryptography are almost restricted in processing of binary images as secret, which are inadequate for many applications like securely transmission of medical images(Store and Forward Telemedicine), forensic images etc. In this paper, a new Verifiable Multi-toned Visual Cryptography (VMVC) scheme is proposed to securely transmit the confidential images on web. Proposed approach also provides cheating prevention, since each pixel of shares contains a self embedding verifiable bit for integrity test of that pixel. Many existing approaches are suffering from many unnecessary encryption constraints like random shares, codebook requirement, contrast loss etc, which all are successfully addressed in proposed approach. Some comparisons with previously proposed methods are also made. Experimental results and analysis are used to prove the efficiency of proposed approach.


Verifiable visual cryptography Multi-toned visual cryptography Secret sharing Meaningful shares 


  1. 1.
    Ateniese G, Blundo C, De Santis A, Stinson DR (1996) Visual cryptography for general access structures. Inf Comput 129(2):86–106MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Ateniese G, Blundo C, De Santis A, Stinson DR (2001) Extended capabilities for visual cryptography. Theor Comput Sci 250:143–161MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Blundo C, Santis AD, Naor M (2000) Visual cryptography for grey level images. Journal of Information Processing Letters 75(6):255–259MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Chen TH, Tsao KH (2009) Visual secret sharing by random grids revisited. Pattern Recognit 42(9):2203–2217CrossRefMATHGoogle Scholar
  5. 5.
    Fu MS, Au OC (2004) Joint visual cryptography and watermarking. In: Proceedings IEEE Int. Conf. Multimedia and Expo, Taipei, TaiwanGoogle Scholar
  6. 6.
    Fang WP, Lin JC (2006) Progressive viewing and sharing of sensitive images. Patt Recog Image Anal 16(4):638–642Google Scholar
  7. 7.
    Fang WP (2008) Friendly progressive visual secret sharing. Pattern Recogn 41 (4):1410–1414CrossRefMATHGoogle Scholar
  8. 8.
    Feng JB, Wu HC, Tsai CS, Chu YP (2005) A new multi-secret images sharing scheme using Largrange’s interpolation. J Syst Softw 76(3):327–339CrossRefGoogle Scholar
  9. 9.
    Horng G, Chen TH, Tsai DS (2007) A cheating prevention scheme for binary visual cryptography with Homogeneous secret image. Pattern Recogn 40(8):2356–2366CrossRefMATHGoogle Scholar
  10. 10.
    Hou Y-C, Quan Z-Y (2011) Progressive Visual Cryptography with Unexpanded Shares. IEEE Trans Circuits Syst Video Technol 21:11CrossRefGoogle Scholar
  11. 11.
    Hou Y-C, Quan Z-Y, Tsai C-F, Tseng A-Y (2013) Block-based progressive visual secret sharing Elsevier. Inf Sci 233:290–304CrossRefGoogle Scholar
  12. 12.
    Hou Y-C, Wei S-C, Lin C-Y (2014) Random-Grid-Based Visual Cryptography Schemes. IEEE Trans Circuits Syst Video Technol 24:5Google Scholar
  13. 13.
    Jin D, Yan WQ, Kankanhalli MS (2005) Progressive color visual cryptography. J Electron Imag 14(3):1–13CrossRefGoogle Scholar
  14. 14.
    Lin C-C, Tsai W-H (2003) Visual cryptography for gray-level images by dithering techniques. Pattern Recogn Lett 24:349–358MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    MacPherson LA (2002) Grey level visual cryptography for general access structures. M.S. thesis University of Waterloo, Ontario, CanadaGoogle Scholar
  16. 16.
    Naor M, Pinkas B (1997) Visual authentication and identification. Crypto97, LNCS 1294:322–340MATHGoogle Scholar
  17. 17.
    Naor M, Shamir A (1995) Visual cryptography. Adv Cryog EUROCRYPT’94, LNCS 950:1–12MATHGoogle Scholar
  18. 18.
    Nakajima M, Yamaguchi Y (2002) Extended visual cryptography for natural images. In: J. WSCG, vol 10, pp 303–310Google Scholar
  19. 19.
    Shyu SJ (2007) Image encryption by random grids. Patt Recog 40(3):1014–1031CrossRefMATHGoogle Scholar
  20. 20.
    Tso H-K (2013) Secret Sharing Using Meaningful Images, Journal of Advanced Management Science, Vol. 1, No. 1Google Scholar
  21. 21.
    Taghaddos D, Latif A (2014) Visual Cryptography for Gray-scale Images Using Bit-level, Journal of Information Hiding and Multimedia Signal Processing. Ubiquitous International, Vol. 5, No. 1Google Scholar
  22. 22.
    Wang Z, Arce GR, Crescenzo GD (2009) Halftone visual cryptography via error diffusion. IEEE Trans Inf Forensics Secur 4(3):383–396CrossRefGoogle Scholar
  23. 23.
    Wang Z-h (2011) Sharing a Secret Image in Binary Images with Verification, Journal of Information Hiding and Multimedia Signal Processing Ubiquitous InternationalGoogle Scholar
  24. 24.
    Wang D-S, Song T, Dong L, Yang C-N (2013) Optimal Contrast Grayscale Visual Cryptography Schemes With Reversing, IEEE Transactions on Information Forensics and Security, Vol. 8, No. 12Google Scholar
  25. 25.
    Yamaguchi Y (2015) Extended visual cryptography for continuous-tone images: effect of the optimum tone mapping. Int. J. Information and Communication Technology, Vol. 7, No. 1Google Scholar
  26. 26.
    Zhou Z, Arce GR, Di Crescenzo G (2006) Halftone visual cryptography. IEEE Trans Image Process 15(8):2441–2453CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Thapar UniversityPatialaIndia

Personalised recommendations