Multimedia Tools and Applications

, Volume 77, Issue 2, pp 1501–1523 | Cite as

Exposing image resampling forgery by using linear parametric model

  • Tong Qiao
  • Aichun Zhu
  • Florent Retraint


Resampling forgery generally refers to as the technique that utilizes interpolation algorithm to maliciously geometrically transform a digital image or a portion of an image. This paper investigates the problem of image resampling detection based on the linear parametric model. First, we expose the periodic artifact of one-dimensional 1-D) resampled signal. After dealing with the nuisance parameters, together with Bayes’ rule, the detector is designed based on the probability of residual noise extracted from resampled signal using linear parametric model. Subsequently, we mainly study the characteristic of a resampled image. Meanwhile, it is proposed to estimate the probability of pixels’ noise and establish a practical Likelihood Ratio Test (LRT). Comparison with the state-of-the-art tests, numerical experiments show the relevance of our proposed algorithm with detecting uncompressed/compressed resampled images.


Image resampling forensics Linear parametric model Bayes’ rule Hypothesis testing 



This work is funded by the State Key Program of Zhejiang Province Natural Science Foundation of China under Grant No. LZ15F020003 and the Natural Science Foundation of China (No. 61602295) and the Natural Science Foundation of Shanghai (No. 16ZR1413100). The Ph.D thesis of Tong Qiao is funded by the China Scholar Council (CSC) and the region Champagne-Ardenne, IDENT project.


  1. 1.
    Amerini I, Ballan L, Caldelli R, Del Bimbo A, Serra G (2011) A sift-based forensic method for copy–move attack detection and transformation recovery. IEEE Trans Inf Forensics Secur 6(3):1099–1110CrossRefGoogle Scholar
  2. 2.
    Bas P, Filler T, Pevný T. (2011) Break our steganographic system — the ins and outs of organizing boss. In: Filler T (ed) 13th International Workshop on Information HidingGoogle Scholar
  3. 3.
    Chen M, Fridrich J, Goljan M, Lukás J (2008) Determining image origin and integrity using sensor noise. IEEE Trans Inf Forensics Secur 3(1):74–90CrossRefGoogle Scholar
  4. 4.
    Christlein V, Riess C, Jordan J, Angelopoulou E (2012) An evaluation of popular copy-move forgery detection approaches. IEEE Trans Inf Forensics Secur 7 (6):1841–1854CrossRefGoogle Scholar
  5. 5.
    Cogranne R, Zitzmann C, Fillatre L, Retraint F, Nikiforov I, Cornu P (2011) A cover image model for reliable steganalysis. In: Information Hiding, pp 178–192. SpringerGoogle Scholar
  6. 6.
    Dempster A P, Laird N M, Rubin D B et al (1977) Maximum likelihood from incomplete data via the em algorithm. J R Stat Soc 39(1):1–38MathSciNetzbMATHGoogle Scholar
  7. 7.
    Farid H (2009) Exposing digital forgeries from jpeg ghosts. IEEE Trans Inf Forensics Secur 4(1):154–160MathSciNetCrossRefGoogle Scholar
  8. 8.
    Farid H (2009) Image forgery detection. IEEE Signal Proc Mag 26(2):16–25CrossRefGoogle Scholar
  9. 9.
    Feng X, Cox I J, Doërr G (2011) An energy-based method for the forensic detection of re-sampled images. In: 2011 IEEE International Conference on Multimedia and Expo (ICME), pp 1–6. IEEEGoogle Scholar
  10. 10.
    Feng X, Cox I J, Doerr G (2012) Normalized energy density-based forensic detection of resampled images. IEEE Trans Multimedia 14(3):536–545CrossRefGoogle Scholar
  11. 11.
    Fridrich A J, Soukal B D, Lukáš A J (2003) Detection of copy-move forgery in digital images. In: Proceedings of Digital Forensic Research Workshop. CiteseerGoogle Scholar
  12. 12.
    Gallagher A, Chen T (2008) Image authentication by detecting traces of demosaicing. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008. CVPRW’08, pp 1–8. IEEEGoogle Scholar
  13. 13.
    Gallagher A C (2005) Detection of linear and cubic interpolation in jpeg compressed images. In: The 2nd Canadian Conference on Computer and Robot Vision, 2005. Proceedings, pp 65–72. IEEEGoogle Scholar
  14. 14.
    Kirchner M (2008) Fast and reliable resampling detection by spectral analysis of fixed linear predictor residue. In: Proceedings of the 10th ACM workshop on Multimedia and security, pp 11–20. ACMGoogle Scholar
  15. 15.
    Kirchner M (2010) Linear row and column predictors for the analysis of resized images. In: Proceedings of the 12th ACM workshop on Multimedia and security, pp 13–18. ACMGoogle Scholar
  16. 16.
    Lehman E R J (2005) Testing statistical hypotheses, 2nd Edn. SpringerGoogle Scholar
  17. 17.
    Li J, Li X, Yang B, Sun X (2015) Segmentation-based image copy-move forgery detection scheme. IEEE Trans Inf Forensics Secur 10(3):507–518CrossRefGoogle Scholar
  18. 18.
    Lukáš J, Fridrich J, Goljan M (2006) Detecting digital image forgeries using sensor pattern noise Electronic Imaging 2006, pp 60,720Y–60,720Y. International Society for Optics and PhotonicsGoogle Scholar
  19. 19.
    Mahdian B, Saic S (2008) Blind authentication using periodic properties of interpolation. IEEE Trans Inf Forensics Secur 3(3):529–538CrossRefGoogle Scholar
  20. 20.
    Oppenheim A V, Schafer R W, Buck J R, et al. (1989) Discrete-time signal processing, vol 2. Prentice-hall, Englewood CliffsGoogle Scholar
  21. 21.
    Popescu A C, Farid H (2005) Exposing digital forgeries by detecting traces of resampling. IEEE Trans Signal Process 53(2):758–767Google Scholar
  22. 22.
    Qiao T, Retraint F, Cogranne R (2013) Image authentication by statistical analysis. In: Signal Processing Conference (EUSIPCO), 2013 Proceedings of the 21th European, pp 1–5. IEEE, EURASIPGoogle Scholar
  23. 23.
    Qiao T, Retraint F, Cogranne R, Thai T H (2015) Source camera device identification based on raw images. In: 2015 IEEE International Conference on Image Processing (ICIP), pp 3812–3816. IEEEGoogle Scholar
  24. 24.
    Qiao T, Retraint F, Cogranne R, Zitzmann C (2015) Steganalysis of jsteg algorithm using hypothesis testing theory. EURASIP J Inf Secur 2015(1):1–16CrossRefGoogle Scholar
  25. 25.
    Qiao T, Ziitmann C, Cogranne R, Retraint F (2014) Detection of jsteg algorithm using hypothesis testing theory and a statistical model with nuisance parameters. In: Proceedings of the 2nd ACM workshop on Information hiding and multimedia security, pp 3–13. ACMGoogle Scholar
  26. 26.
    Qiao T, Zitzmann C, Retraint F, Cogranne R (2014) Statistical detection of jsteg steganography using hypothesis testing theory. In: 2014 IEEE International Conference on Image Processing (ICIP), pp 5517–5521. IEEEGoogle Scholar
  27. 27.
    Qin C, Chang C C, Chen P Y (2012) Self-embedding fragile watermarking with restoration capability based on adaptive bit allocation mechanism. Signal Process 92(4):1137–1150CrossRefGoogle Scholar
  28. 28.
    Qin C, Chen X, Ye D, Wang J, Sun X (2016) A novel image hashing scheme with perceptual robustness using block truncation coding. Inf Sci 361:84–99CrossRefGoogle Scholar
  29. 29.
    Ryu S J, Lee H K (2014) Estimation of linear transformation by analyzing the periodicity of interpolation. Pattern Recogn Lett 36:89–99CrossRefGoogle Scholar
  30. 30.
    Schaefer G, Stich M (2003) Ucid: an uncompressed color image database. In: Electronic Imaging 2004, pp 472–480. International Society for Optics and PhotonicsGoogle Scholar
  31. 31.
    Sencar H T, Memon N (2012) Digital image forensics: There is more to a picture than meets the eye. SpringerGoogle Scholar
  32. 32.
    Stamm M C, Wu M, Liu K (2013) Information forensics: An overview of the first decade. IEEE Access 1(1):167–200CrossRefGoogle Scholar
  33. 33.
    Thai T H, Cogranne R, Retraint F (2014) Camera model identification based on the heteroscedastic noise model. IEEE Trans Image Process 23(1):250–263MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Wei W, Wang S, Zhang X, Tang Z (2010) Estimation of image rotation angle using interpolation-related spectral signatures with application to blind detection of image forgery. IEEE Trans Inf Forensics Secur 5(3):507–517CrossRefGoogle Scholar
  35. 35.
    Xia Z, Wang X, Sun X, Liu Q, Xiong N (2016) Steganalysis of lsb matching using differences between nonadjacent pixels. Multimedia Tools and Applications 75 (4):1947–1962CrossRefGoogle Scholar
  36. 36.
    Zitzmann C, Cogranne R, Retraint F, Nikiforov I, Fillatre L, Cornu P (2011) Statistical decision methods in hidden information detection. In: Information Hiding, pp 163–177. SpringerGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of CyberspaceHangzhou Dianzi UniversityHangzhouChina
  2. 2.School of Computer Science and TechnologyNanjing Tech UniversityNanjingChina
  3. 3.LM2SUniversity of Technology of TroyesTroyesFrance

Personalised recommendations