Multimedia Tools and Applications

, Volume 77, Issue 1, pp 125–148 | Cite as

Adaptive streaming of complex Web 3D scenes based on the MPEG-DASH standard

  • Markos Zampoglou
  • Kostas Kapetanakis
  • Andreas Stamoulias
  • Athanasios G. Malamos
  • Spyros Panagiotakis
Article

Abstract

Modern Web 3D technologies allow us to display complex interactive 3D content, including models, textures, sounds and animations, using any HTML-enabled web browser. Thus, due to the device-independent nature of HTML5, the same content might have to be displayed on a wide range of different devices and environments. This means that the display of Web 3D content is faced with the same Quality of Experience (QoE) issues as other multimedia types, concerning bandwidth, computational capabilities of the end device, and content quality. In this paper, we present a framework for adaptive streaming of interactive Web 3D scenes to web clients using the MPEG-DASH standard. We offer an analysis of how the standard’s Media Presentation Description schema can be used to describe adaptive Web 3D scenes for streaming, and explore the types of metrics that can be used to maximize the user’s QoE. Then, we present a prototype client we have developed, and demonstrate how the 3D streaming process can take place over such a client. Finally, we discuss how the client framework can be used to design adaptive streaming policies that correspond to real-world scenarios.

Keywords

3D streaming MPEG-DASH Quality of Experience Web 3D X3D HTML5 

Notes

Acknowledgements

The research of this paper is granted by the European Union and the Hellenic General Secretary of Research and Technology under the “COOPERATION 2009/09SYN-72-956” Framework.

References

  1. 1.
    Alliez P, Desbrun M (2001) Progressive compression for lossless transmission of triangle meshes. Computer Graphics (SIGGRAPH-01), Proceedings of the Annual Conference on, 195–202, ACMGoogle Scholar
  2. 2.
    Behr J, Jung Y, Franke T, Sturm T, (2012) Using images and explicit binary container for efficient and incremental delivery of declarative 3D scenes on the web. Web3D Technology (Web3D), 17th International Symposium on, 17–25, ACMGoogle Scholar
  3. 3.
    Behr J, Jung Y, Keil J, Drevensek T, Zollner M, Eschler P, Fellner D (2010) A scalable architecture for the HTML/X3D integration model X3DOM. Web 3D Technology (Web3D), 15th International Conference on, 185–194, ACMGoogle Scholar
  4. 4.
    Bourdena A, Kormentzas G, Pallis E, Mastorakis G (2013) Radio resource management algorithms for efficient QoS provisioning over cognitive radio networks. Communications (ICC), 2013 I.E. International Conference on, 2415–2420Google Scholar
  5. 5.
    Brooks RJ, Tobias AM (1996) Choosing the best model: level of detail, complexity, and model performance. Math Comput Model 24(4):1–14CrossRefMATHGoogle Scholar
  6. 6.
    Carmona-Murillo J, Gonzalez-Sanchez JL, Cortes-Polo D, Rodriguez-Perez FJ (2014) QoS in Next generation mobile networks: an analytical study. In Mavromoustakis CX, Pallis E, Mastorakis G (eds) Resource management in mobile computing environments. Springer International Publishing, pp. 25–41Google Scholar
  7. 7.
    Coding of audio-visual objects - Part 11: scene description and application engine, ISO/IEC 14496–11:2014Google Scholar
  8. 8.
    Dynamic adaptive streaming over HTTP (DASH) — Part 1: media presentation description and segment formats, ISO/IEC 23009–1:2014Google Scholar
  9. 9.
    Extensible 3D (X3D), ISO/IEC 19775:2004/Am1:2006Google Scholar
  10. 10.
    Extensible 3D (X3D) encodings, ISO/IEC 19776:2005Google Scholar
  11. 11.
    Gandoin PM, Devillers O (2002) Progressive lossless compression of arbitrary simplicial complexes. Computer Graphics and Interactive Techniques (SIGGRAPH-02), Proceedings of the ACM Conference on, 372–379, ACMGoogle Scholar
  12. 12.
    Hoppe H (1996) Progressive meshes. Computer graphics (SIGGRAPH-96), Proceedings of the ACM Conference on, 99–108, ACMGoogle Scholar
  13. 13.
    Kapetanakis K, Panagiotakis S, Malamos AG, Zampoglou M (2014) Adaptive Video Streaming on top of Web3D: A bridging technology between X3DOM and MPEG-DASH. Telecommunications and Multimedia (TEMU), Proceedings of the 6th IEEE International Conference on, 226–231Google Scholar
  14. 14.
    Kapetanakis K, Zampoglou M, Malamos AG, Panagiotakis S, Maravelakis E (2014) An MPEG-DASH framework for QoE-aware Web3D streaming. International Journal of Wireless Networks and Broadband Technologies (IJWNBT) 3(4):1–20. doi: 10.4018/ijwnbt.2014100101, IGI Global CrossRefGoogle Scholar
  15. 15.
    Kapetanakis K, Zampoglou M, Milionis F, Malamos AG, Panagiotakis S, Maravelakis E (2014) State-of-the-art web technologies for progressive presentation of synthetic cultural heritage scenes, Information, Intelligence, Systems and Applications (IISA 2014), Proceedings of the 5th IEEE International Conference on, 211–216Google Scholar
  16. 16.
    Lavoue G, Chevalier L, Dupont F (2013) Streaming compressed 3D data on the web using javascript and webGL, Web3D Technology (Web3D) 18th International Conference on, 19–27, ACMGoogle Scholar
  17. 17.
    Limper M, Jung Y, Behr J, Alexa M (2013) The POP buffer: rapid progressive clustering by geometry quantization. Comput Graph Forum 32(7):197–206CrossRefGoogle Scholar
  18. 18.
    Limper M, Wagner S, Stein C, Jung Y, Stork A (2013) Fast delivery of 3D web content: a case study. Web 3D Technology (Web3D), In Proceedings of the 18th International Conference on, 11–17, ACMGoogle Scholar
  19. 19.
    Luebke DP (2003) Level of detail for 3D graphics. Morgan KaufmannGoogle Scholar
  20. 20.
    Lv Z, Li X, Zhang B, Wang W, Zhu Y, Hu J, Feng S (2016) Managing big city information based on WebVRGIS. IEEE Access 4:407–415CrossRefGoogle Scholar
  21. 21.
    Lv Z, Réhman SU, Chen G (2013). Webvrgis: A p2p network engine for vr data and gis analysis. In International Conference on Neural Information Processing (pp. 503–510). Springer Berlin HeidelbergGoogle Scholar
  22. 22.
    Mamou K, Dehais C, Chaieb F, Ghorbel F (2010) Shape approximation for efficient progressive mesh compression. Image Processing (ICIP), Proceedings of the IEEE International Conference on, pp. 3425–3428Google Scholar
  23. 23.
    Narayanan RGL (2014) Mobile video streaming resource management. In Mavromoustakis CX, Pallis E, Mastorakis G (eds) Resource management in mobile computing environments, Springer International Publishing, pp. 461–480Google Scholar
  24. 24.
    Peng J, Kuo CCJ (2005) Geometry-guided progressive lossless 3D mesh coding with octree (OT) decomposition. ACM Trans Graph 24(3):609–616CrossRefGoogle Scholar
  25. 25.
    Stamoulias A, Malamos AG, Zampoglou M, Brutzman D (2014) Enhancing X3DOM declarative 3D with rigid body physics support. 3D Web Technologies (Web3D), Proceedings of the Nineteenth International ACM Conference on, 99–107, ACMGoogle Scholar
  26. 26.
    The Virtual Reality Modeling Language (VRML) – Part 2: external authoring interface (EAI), ISO/IEC 14772–2:2004Google Scholar
  27. 27.
    The Virtual Reality Modeling Language – part 1: functional specification and UTF-8 encoding, ISO/IEC 14772–1:1997Google Scholar
  28. 28.
    Valette S, Chaine R, Prost R (2009) Progressive lossless mesh compression via incremental parametric refinement. Comput Graph Forum 28(5):1301–1310CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Markos Zampoglou
    • 1
  • Kostas Kapetanakis
    • 1
  • Andreas Stamoulias
    • 1
  • Athanasios G. Malamos
    • 1
  • Spyros Panagiotakis
    • 1
  1. 1.Multimedia Content Lab, Department of Informatics EngineeringTEI of CreteIraklioGreece

Personalised recommendations