Multimedia Tools and Applications

, Volume 76, Issue 22, pp 24435–24456 | Cite as

An image-based near-duplicate video retrieval and localization using improved Edit distance

  • Hao Liu
  • Qingjie Zhao
  • Hao Wang
  • Peng Lv
  • Yanming Chen


The rapid development of social network in recent years has spurred enormous growth of near-duplicate videos. The existence of huge volumes of near-duplicates shows a rising demand on effective near-duplicate video retrieval technique in copyright violation and search result reranking. In this paper, we propose an image-based algorithm using improved Edit distance for near-duplicate video retrieval and localization. By regarding video sequences as strings, Edit distance is used and extended to retrieve and localize near-duplicate videos. Firstly, bag-of-words (BOW) model is utilized to measure the frame similarities, which is robust to spatial transformations. Then, non-near-duplicate videos are filtered out by computing the proposed relative Edit distance similarity (REDS). Next, a detect-and-refine-strategy-based dynamic programming algorithm is proposed to generate the path matrix, which can be used to aggregate scores for video similarity measure and localize the similar parts. Experiments on CC_WEB_VIDEO and TREC CBCD 2011 datasets demonstrated the effectiveness and robustness of the proposed method in retrieval and localization tasks.


Near-duplicate video retrieval Near-duplicate video localization Video copy detection Edit distance 



This work is supported by the National Natural Science Foundation of China (No. 61175096). The authors would like to thank the anonymous editor and reviewers who gave valuable suggestion that have helped to improve the quality of the manuscript.


  1. 1.
    Arandjelović R, Zisserman A (2012) Three things everyone should know to improve object retrieval. In: Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, pp 2911–2918Google Scholar
  2. 2.
    Awad G, Over P, Kraaij W (2014) Content-based video copy detection benchmarking at trecvid. ACM Trans Inf Syst (TOIS) 32(3):14CrossRefGoogle Scholar
  3. 3.
    Cherubini M, De Oliveira R, Oliver N (2009) Understanding near-duplicate videos: a user-centric approach. In: Proceedings of the 17th ACM international conference on Multimedia, ACM, pp 35–44Google Scholar
  4. 4.
    Chiu CY, Chen CS, Chien LF (2008) A framework for handling spatiotemporal variations in video copy detection. IEEE Trans Circuits Syst Video Technol 18(3):412–417CrossRefGoogle Scholar
  5. 5.
    Chiu CY, Tsai TH, Liou YC, Han GW, Chang HS (2014) Near-duplicate subsequence matching between the continuous stream and large video dataset. IEEE Trans Multimedia 16(7):1952–1962CrossRefGoogle Scholar
  6. 6.
    Chou CL, Chen HT, Chen YC, Ho CP, Lee SY (2013) Near-duplicate video retrieval and localization using pattern set based dynamic programming. In: Proceedings of 2013 IEEE International Conference on Multimedia and Expo (ICME), IEEE, pp 1–6Google Scholar
  7. 7.
    Chou CL, Chen HT, Lee SY (2015) Pattern-based near-duplicate video retrieval and localization on web-scale videos. IEEE Trans Multimedia 17(3):382–395CrossRefGoogle Scholar
  8. 8.
    Douze M, Jégou H, Schmid C (2010) An image-based approach to video copy detection with spatio-temporal post-filtering. IEEE Trans Multimedia 12(4):257–266CrossRefGoogle Scholar
  9. 9.
    Esmaeili MM, Fatourechi M, Ward R K (2011) A robust and fast video copy detection system using content-based fingerprinting. IEEE Trans Inf Forensics Secur 6 (1):213–226CrossRefGoogle Scholar
  10. 10.
    Huang Z, Shen HT, Shao J, Zhou X, Cui B (2009) Bounded coordinate system indexing for real-time video clip search. ACM Trans Inf Syst (TOIS) 27(3):17CrossRefGoogle Scholar
  11. 11.
    Jégou H, Douze M, Schmid C (2008) Hamming embedding and weak geometric consistency for large scale image search. SpringerGoogle Scholar
  12. 12.
    Jun W, Lee Y, Jun BM (2015) Duplicate video detection for large-scale multimedia. Multimedia Tools and Applications:1–14. doi: 10.1007/s11042-015-2724-0
  13. 13.
    Kraaij W, Awad G (2011) Trecvid 2011 content-based copy detection: Task overview Online Proceedings of TRECVid 2010 [Online], Available:
  14. 14.
    Liu J, Huang Z, Cai H, Shen HT, Ngo CW, Wang W (2013) Near-duplicate video retrieval: Current research and future trends. ACM Comput Surv (CSUR) 45(4):44CrossRefGoogle Scholar
  15. 15.
    Liu L, Lai W, Hua XS, Yang SQ (2007) Video histogram: A novel video signature for efficient web video duplicate detection. Springer, pp 94–103Google Scholar
  16. 16.
    Manning CD, Raghavan P, Schütze H (2008) Introduction to Information Retrieval. Cambridge University Press New York, NY, USAGoogle Scholar
  17. 17.
    Poullot S, Crucianu M, Buisson O (2008) Scalable mining of large video databases using copy detection. In: Proceedings of the 16th ACM international conference on Multimedia, ACM, pp 61–70Google Scholar
  18. 18.
    Ren J, Chang F, Wood T, Zhang JR (2012) Efficient video copy detection via aligning video signature time series. In: Proceedings of the 2nd ACM International Conference on Multimedia Retrieval, ACM, p 14Google Scholar
  19. 19.
    Roopalakshmi R, Reddy GRM (2013) A novel spatio-temporal registration framework for video copy localization based on multimodal features. Signal Proc 93 (8):2339–2351CrossRefGoogle Scholar
  20. 20.
    Shang L, Yang L, Wang F, Chan KP, Hua XS (2010) Real-time large scale near-duplicate web video retrieval. In: Proceedings of the 18th ACM international conference on Multimedia, ACM, pp 531– 540Google Scholar
  21. 21.
    Song J, Yang Y, Huang Z, Shen HT, Luo J (2013) Effective multiple feature hashing for large-scale near-duplicate video retrieval. IEEE Trans Multimedia 15(8):1997–2008CrossRefGoogle Scholar
  22. 22.
    Su PC, Wu CS (2015) Efficient copy detection for compressed digital videos by spatial and temporal feature extraction. Multimedia Tools and Applications:1–23. doi: 10.1007/s11042-015-3132-1
  23. 23.
    Tan HK, Ngo CW, Chua TS (2010) Efficient mining of multiple partial near-duplicate alignments by temporal network. IEEE Trans Circuits Syst Video Technol 20(11):1486–1498CrossRefGoogle Scholar
  24. 24.
    Tian Y, Qian M, Huang T (2015) Tasc: A transformation-aware soft cascading approach for multimodal video copy detection. ACM Trans Inf Syst (TOIS) 33(2):7CrossRefGoogle Scholar
  25. 25.
    Wang H, Zhu F, Xiao B, Wang L, Jiang YG (2015) GPU-based MapReduce for large-scale near-duplicate video retrieval. Multimedia Tools and Applications 74 (23):10,515–10,534CrossRefGoogle Scholar
  26. 26.
    Wu X, Hauptmann AG, Ngo CW (2007) Practical elimination of near-duplicates from web video search. In: Proceedings of the 15th ACM international conference on Multimedia, ACM, pp 218– 227Google Scholar
  27. 27.
    Wu X, Ngo CW, Hauptmann AG, Tan HK (2009) Real-time near-duplicate elimination for web video search with content and context. IEEE Trans Multimedia 11 (2):196–207CrossRefGoogle Scholar
  28. 28.
    Wu Z, Aizawa K (2014) Self-similarity-based partial near-duplicate video retrieval and alignment. International Journal of Multimedia Information Retrieval 3(1):1–14CrossRefGoogle Scholar
  29. 29.
    Yeh MC, Cheng KT (2009) Video copy detection by fast sequence matching. In: Proceedings of the ACM International Conference on Image and Video Retrieval, ACM, p 45Google Scholar
  30. 30.
    Zhao WL, Wu X, Ngo CW (2010) On the annotation of web videos by efficient near-duplicate search. IEEE Trans Multimedia 12(5):448–461CrossRefGoogle Scholar
  31. 31.
    Zheng L, Qiu G, Huang J, Fu H (2011) Salient covariance for near-duplicate image and video detection. In: Proceedings of 2011 18th IEEE International Conference on Image Processing, IEEE, pp 2537– 2540Google Scholar
  32. 32.
    Zhou X, Chen L, Zhou X (2012) Structure tensor series-based large scale near-duplicate video retrieval. IEEE Trans Multimedia 14(4):1220–1233CrossRefGoogle Scholar
  33. 33.
    Zhou X, Zhou X, Shen HT (2007) A new similarity measure for near duplicate video clip detection. In: Proceedings of Advances in Data and Web Management. Springer, pp 176–187Google Scholar
  34. 34.
    Zhu Y, Huang X, Huang Q, Tian Q (2016) Large-scale video copy retrieval with temporal-concentration sift. Neurocomputing 187:83–91CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Hao Liu
    • 1
  • Qingjie Zhao
    • 1
  • Hao Wang
    • 1
  • Peng Lv
    • 1
  • Yanming Chen
    • 1
  1. 1.Beijing Key Laboratory of Intelligent Information Technology, School of Computer Science and TechnologyBeijing Institute of TechnologyBeijingChina

Personalised recommendations