Multimedia Tools and Applications

, Volume 76, Issue 3, pp 3899–3920 | Cite as

Reversible data hiding in encrypted images based on multi-level encryption and block histogram modification

  • Zhaoxia Yin
  • Andrew Abel
  • Jin Tang
  • Xinpeng Zhang
  • Bin Luo
Article
  • 358 Downloads

Abstract

In recent years there has been significant interest in reversible data hiding, and also in particular, reversible data hiding in encrypted images (RDH-EI). This means that additional data can be embedded into a previously encrypted image with no knowledge of the original image content. According to the held keys, legal receivers can get the embedded data or an image very similar to the original one, or, both the embedded data and an image exactly as the original one. In this paper, we propose and evaluate a RDH-EI framework. Firstly, we propose a multi-level encryption (MLE) scheme using both Josephus traversal based multi-granular encryption and a stream cipher. To reduce the quantity of side information required to embed into images together with additional data, we also present a block histogram modification (BHM) approach with self-hidden peak pixels to perform reversible data embedding and a location map marking scheme to perform histogram contraction and recovery. The experimental results demonstrate that, in comparison with other similar methods, the proposed framework achieves improvements in terms of the embedding payload, the decrypted image quality and the accuracy of image restoration.

Keywords

Signal processing in encrypted domain (SPED) Reversible data hiding in encrypted images (RDH-EI) Privacy protection 

References

  1. 1.
    Cao X, Du L, Wei X, Meng D, Guo X (2015) High capacity reversible data hiding in encrypted images by patch-level sparse representation. IEEE Trans On Cybernetics. doi:10.1109/TCYB.2015.2423678 Google Scholar
  2. 2.
    Chen B, Shu H, Coatrieux G, Chen SX, Coatrieux JL (2015) Color image analysis by quaternion-type moments. Journal of Mathematical Imaging and Vision 51(1):124–144MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Erkin Z, Piva A, Katzenbeisser S, Lagendijk RL, Shokrollahi J, Neven G, Barni M (2007) Protection and retrieval of encrypted multimedia content: when cryptography meets signal processing. EURASIP J Inf Secur 2007:1–20CrossRefGoogle Scholar
  4. 4.
    Gao X, An L, Yuan Y, Tao D, Li X (2011) Lossless data embedding using generalized statistical quantity histogram. IEEE Transactions on Circuits and Systems for Video Technology 21(8):1061–1070CrossRefGoogle Scholar
  5. 5.
    Hong W, Chen TS (2012) A novel data embedding method using adaptive pixel pair matching. IEEE Transactions on Information Forensics and Security 7(1):176–184CrossRefGoogle Scholar
  6. 6.
    Hong W, Chen TS, Wu HY (2012) An improved reversible data hiding in encrypted images using side match. IEEE Signal Processing Letters 19(4):199–202CrossRefGoogle Scholar
  7. 7.
    Hong W, Chen TS, Chen J et al (2013) Reversible data embedment for encrypted cartoon images using unbalanced bit flipping. In: Advances in swarm intelligence. Springer, Berlin, pp. 208–214CrossRefGoogle Scholar
  8. 8.
    Hu Y, Lee HK, Li J (2009) DE-based reversible data hiding with improved overflow location map. IEEE Transactions on Circuits and Systems for Video Technology 19(2):250–260CrossRefGoogle Scholar
  9. 9.
    Li J, Li X, Yang B, Sun X (2015a) Segmentation-based image copy-move forgery detection scheme. IEEE Transactions on Information Forensics and Security 10(3):507–518CrossRefGoogle Scholar
  10. 10.
    Li X, Sun X, Liu Q (2015b) Image integrity authentication scheme based on fixed point theory [J]. IEEE Trans Image Process 24(2):632–645MathSciNetCrossRefGoogle Scholar
  11. 11.
    Liao X, Shu C (2015) Reversible data hiding in encrypted images based on absolute mean difference of multiple neighboring pixels. J Vis Commun Image Represent 28:21–27CrossRefGoogle Scholar
  12. 12.
    Ma K, Zhang W, Zhao X, Yu N, Li F (2013) Reversible data hiding in encrypted images by reserving room before encryption. IEEE Transactions on Information Forensics and Security 8(3):553–562CrossRefGoogle Scholar
  13. 13.
    Ni Z, Shi YQ, Ansari N, Su W (2006) Reversible data hiding. IEEE Transactions on Circuits and Systems for Video Technology 16(3):354–362CrossRefGoogle Scholar
  14. 14.
    Ou, B., Li, X., and Zhang, W. (2015) PVO-based reversible data hiding for encrypted images. Signal and Information Processing (ChinaSIP), 2015 I.E. China Summit and International Conference on IEEE. 831–835Google Scholar
  15. 15.
    Pandey R, Singh AK, Kumar B et al (2016) Iris based secure NROI multiple eye image watermarking for teleophthalmology[J]. Multimedia Tools and Applications:1–17. doi:10.1007/s11042-016-3536-6
  16. 16.
    Qian Z, Zhang X, Wang S (2014) Reversible data hiding in encrypted JPEG Bitstream. IEEE Trans on Multimedia 16(5):1486–1491CrossRefGoogle Scholar
  17. 17.
    Qin C, Zhang X (2015) Effective reversible data hiding in encrypted image with privacy protection for image content. J Vis Commun Image Represent 31:154–164CrossRefGoogle Scholar
  18. 18.
    Schaefer G, Stich M (2004) UCID-an uncompressed color image database. Proc. SPIE, Storage and Retrieval Methods and Applications for Multimedia:472–480Google Scholar
  19. 19.
    Shiu CW, Chen YC, Hong W (2015) Encrypted image-based reversible data hiding with public key cryptography from difference expansion. Signal Process Image Commun 39:226–233CrossRefGoogle Scholar
  20. 20.
    Singh AK (2016a) Improved hybrid technique for robust and imperceptible multiple watermarking using medical images. Multimedia Tools and Applications: An International Journal, Springer. doi:10.1007/s11042- 016-3514-z Google Scholar
  21. 21.
    Singh AK (2016b) Improved hybrid algorithm for robust and imperceptible multiple watermarking using digital images [J]. Multimedia Tools and Applications:1–18. doi:10.1007/s11042-016-3514-z
  22. 22.
    Singh AK, Dave M, Mohan A (2014a) Wavelet based image watermarking: futuristic concepts in information security [J]. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences 84(3):345–359CrossRefGoogle Scholar
  23. 23.
    Singh AK, Dave M, Mohan A (2014b) Hybrid technique for robust and imperceptible image watermarking in DWT–DCT–SVD domain[J]. National Academy Science Letters 37(4):351–358CrossRefGoogle Scholar
  24. 24.
    Singh AK, Dave M, Mohan A (2015a) Robust and secure multiple watermarking in wavelet domain [J]. Journal of Medical Imaging and Health Informatics 5(2):406–414CrossRefGoogle Scholar
  25. 25.
    Singh AK, Kumar B, Dave M et al (2015b) Multiple watermarking on medical images using selective discrete wavelet transform coefficients [J]. Journal of Medical Imaging and Health Informatics 5(3):607–614CrossRefGoogle Scholar
  26. 26.
    Singh AK, Kumar B, Dave M et al (2015c) Robust and imperceptible dual watermarking for telemedicine applications[J]. Wirel Pers Commun 80(4):1415–1433CrossRefGoogle Scholar
  27. 27.
    Tian J (2003) Reversible data embedding using a difference expansion. IEEE Transactions on Circuits and Systems for Video Technology 13(8):890–896CrossRefGoogle Scholar
  28. 28.
    Wang J, Lian S, Shi YQ (2015a) Hybrid multiplicative multi-watermarking in DWT domain [J]. Multidim Syst Sign Process 1-20. doi:10.1007/s11045-015-0363-2
  29. 29.
    Wang J, Lian S, Wang J (2015b) Hybrid additive multi-watermarking and decoding[J]. Multimedia Systems 21(4):345–361CrossRefGoogle Scholar
  30. 30.
    Wu X, Sun W (2014) High-capacity reversible data hiding in encrypted images by prediction error. Signal Process 104:387–400CrossRefGoogle Scholar
  31. 31.
    Xia Z, Wang X, Sun X, Wang B (2014) Steganalysis of least significant bit matching using multi-order differences. Security and Communication Networks 7(8):1283–1291CrossRefGoogle Scholar
  32. 32.
    Xia Z, Wang X, Sun X, Liu Q, Xiong N (2016a) Steganalysis of LSB matching using differences between nonadjacent pixels. Multimedia Tools and Applications 75(4):1947–1962CrossRefGoogle Scholar
  33. 33.
    Xia Z, Wang X, Sun X, Wang Q (2016b) A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Transactions on Parallel and Distributed Systems 27(2):340–352CrossRefGoogle Scholar
  34. 34.
    Xiang D, Xiong Y (2005) Digital image scrambling based on josephus traversing. Computer Engineering and Applications 41(10):44–46Google Scholar
  35. 35.
    Yin ZX, Luo B, Hong W (2014) Separable and error-free reversible data hiding in encrypted image with high payload. Sci World J. doi:10.1155/2014/604876
  36. 36.
    Zhang X (2011) Reversible data hiding in encrypted image. IEEE Signal Processing Letters 18(4):255–258CrossRefGoogle Scholar
  37. 37.
    Zhang X (2012) Separable reversible data hiding in encrypted image. IEEE Transactions on Information Forensics and Security 7(2):826–832CrossRefGoogle Scholar
  38. 38.
    Zhang X, Wang S (2006) Efficient steganographic embedding by exploiting modification direction. IEEE Commun Lett 10(11):781–783CrossRefGoogle Scholar
  39. 39.
    Zhang W, Ma K, Yu N (2013) Reversibility improved data hiding in encrypted images. Signal Process 94:118–127CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Zhaoxia Yin
    • 1
    • 2
  • Andrew Abel
    • 3
  • Jin Tang
    • 2
  • Xinpeng Zhang
    • 1
  • Bin Luo
    • 2
  1. 1.School of Communication and Information EngineeringShanghai UniversityShanghaiPeople’s Republic of China
  2. 2.Key Laboratory of Intelligent Computing & Signal Processing, Ministry of EducationAnhui UniversityHefeiPeople’s Republic of China
  3. 3.Computing Science and MathematicsUniversity of StirlingStirlingUK

Personalised recommendations