Multimedia Tools and Applications

, Volume 76, Issue 4, pp 5441–5460 | Cite as

An efficient reversible data hiding method for AMBTC compressed images

  • Wien Hong
  • Yuan-Bo Ma
  • Hung-Che Wu
  • Tung-Shou Chen


Analyzing multimedia data in mobile devices is often constrained by limited computing capacity and power storage. Therefore, more and more studies are trying to investigate methods with algorithm efficiency. Sun et al. proposed a low computing cost reversible data hiding method for absolute moment block truncation coding (AMBTC) images with excellent embedding performance. Their method predicts quantization values and uses encrypted data bits, division information, and prediction errors to construct the stego codes. This method successfully embeds data while providing a comparable bit-rate; however, it does not fully exploit the correlation of neighboring pixels and division of prediction error for better embedment. Therefore, the payload and bit-rate are penalized because the embedding performance directly depends on the prediction accuracy and division efficiency. In this paper, we use median edge detection predictor to better predict the quantization values. We also employ an alternative prediction technique to increase the prediction accuracy by narrowing the range of prediction values. Besides, an efficient centralized error diversion technique is proposed to further decrease the bit-rate. The experimental results show that the proposed method offers 8 % higher payload with 5 % lower bit-rate on average if compared to Sun et al.’s method and has better embedding performance than prior related works.


Reversible data hiding AMBTC Prediction Low computing cost 


  1. 1.
    Chang CC, Chen TS, Chung LZ (2002) A steganographic method based upon JPEG and quantization table modification. Inform Sci 141(1-2):123–128CrossRefMATHGoogle Scholar
  2. 2.
    Chang CC, Kieu TD, Wu WC (2009) A lossless data embedding technique by joint neighboring coding. Pattern Recogn 42(7):1597–1630CrossRefMATHGoogle Scholar
  3. 3.
    Chen J, Hong W, Chen TS, Shiu CW (2010) Steganography for BTC compressed images using no distortion technique. Imag Sci J 58(4):177–185CrossRefGoogle Scholar
  4. 4.
    Chen B, Shu H, Coatrieux G, Chen SX, Coatrieux JL (2015) Color image analysis by quaternion-type moments. J Math Imag Vision 51(1):124–144MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Delp EJ, Mitchell OR (1979) Image compression using block truncation coding. IEEE Trans Commun 27(9):1335–1342CrossRefGoogle Scholar
  6. 6.
    Fu Z, Sun X, Liu Q, Zhou L, Shu J (2015) Achieving efficient cloud search services: multi-keyword ranked search over encrypted cloud data supporting parallel computing. IEICE Trans Commun E98-B(1):190–200CrossRefGoogle Scholar
  7. 7.
    Gu B, Sheng VS, Tay KY, Romano W, Li S (2015) Incremental support vector learning for ordinal regression. IEEE Trans Neural Netw Learn Syst 26(7):1403–1416MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gu B, Sheng VS, Wang Z, Ho D, Osman S, Li S (2015) Incremental learning for v-support vector regression. Neural Netw 67:140–150CrossRefGoogle Scholar
  9. 9.
    Guo P, Wang J, Xue HG, Chang SK, Kim JU (2014) A variable threshold-value authentication architecture for wireless mesh networks. J Internet Technol 15(6):929–936Google Scholar
  10. 10.
    Hong W (2013) Adaptive image data hiding in edges using patched reference table and pair-wise embedding technique. Inform Sci 221(1):473–489CrossRefGoogle Scholar
  11. 11.
    Hong W, Chen TS (2012) A novel data embedding method using adaptive pixel pair matching. IEEE Trans Inform Forensics Sec 7(1):176–184CrossRefGoogle Scholar
  12. 12.
    Hong W, Chen TS, Shiu CW, Wu MC (2011) Lossless data embedding in BTC codes based on prediction and histogram shifting. Appl Mech Mater 65:182–185CrossRefGoogle Scholar
  13. 13.
    Hong W, Chen TS, Chen J (2015) Reversible data hiding using Delaunay triangulation and selective embedment. Inf Sci 308(1):140–154MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hong W, Chen TS, Shiu CW (2009) Reversible data hiding for high quality images using modification of prediction errors. J Syst Software 82:1833–1842CrossRefGoogle Scholar
  15. 15.
    Huang YH, Chang CC, Chen YH (2016) Hybrid secret hiding schemes based on absolute moment block truncation coding. Multimed Tools Appl. doi:10.1007/s11042-015-3208-y Google Scholar
  16. 16.
    Lema M, Mitchell OR (1984) Absolute moment block truncation coding and its application to color images. IEEE Trans Commun 32(10):1148–1157CrossRefGoogle Scholar
  17. 17.
    Li J, Li X, Yang B, Sun X (2015) Segmentation-based image copy-move forgery detection scheme. IEEE Trans Inform Forensics Sec 10(3):507–518CrossRefGoogle Scholar
  18. 18.
    Lin CC, Liu XL, Tai WL, Yuan SM (2015) A novel reversible data hiding scheme based on AMBTC compression technique. Multimed Tools Appl 74(11):3823–3842CrossRefGoogle Scholar
  19. 19.
    Lou DC, Hu CH (2012) LSB steganographic method based on reversible histogram transformation function for resisting statistical steganalysis. Inf Sci 188(4):346–358CrossRefGoogle Scholar
  20. 20.
    Malik A, Sikka G, Verma HK (2016) A high payload data hiding scheme based on modified AMBTC technique. Doi: 10.1007/s11042-016-3815-2
  21. 21.
    Ni ZC, Shi YQ, Ansari N, Su W (2006) Reversible data hiding. IEEE Trans Circ Syst Video Technol 16(3):354–362CrossRefGoogle Scholar
  22. 22.
    Ou D, Sun W (2015) High payload image steganography with minimum distortion based on absolute moment block truncation coding. Multimed Tools Appl 74(21):9117–9139CrossRefGoogle Scholar
  23. 23.
    Shen J, Tan H, Wang J, Wang J, Lee S (2015) A novel routing protocol providing good transmission reliability in underwater sensor networks. J Internet Technol 16(1):171–178Google Scholar
  24. 24.
    Shiu CW, Chen YC, Hong W (2015) Encrypted image-based reversible data hiding with public key cryptography from difference expansion. Signal Process Image Commun 39:226–233CrossRefGoogle Scholar
  25. 25.
    Sun W, Lu ZM, Wen YC, Yu FX, Shen RJ (2013) High performance reversible data hiding for block truncation coding compressed images. SIViP 7(2):297–306CrossRefGoogle Scholar
  26. 26.
    The USC-SIPI Image Database.
  27. 27.
    Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circ Syst Video Technol 13(8):890–896CrossRefGoogle Scholar
  28. 28.
    Wen X, Shao L, Xue Y, Fang W (2015) A rapid learning algorithm for vehicle classification. Inf Sci 295(1):395–406CrossRefGoogle Scholar
  29. 29.
    Xia Z, Wang X, Sun X, Liu Q, Xiong N (2014) Steganalysis of LSB matching using differences between nonadjacent pixels. Multimed Tools Appl. doi:10.1007/s11042-014-2381-8 Google Scholar
  30. 30.
    Xia Z, Wang X, Sun X, Wang B (2013) Steganalysis of least significant bit matching using multi-order differences. Security Commun Netw 7(8):1283–1291CrossRefGoogle Scholar
  31. 31.
    Xia Z, Wang X, Sun X, Wang Q (2016) A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans Parallel Distrib Syst 27(2):340–352CrossRefGoogle Scholar
  32. 32.
    Yuan C, Sun X, Rui L (2016) Fingerprint liveness detection based on multi-scale LPQ and PCA. Chin Commun 13(7):60–65CrossRefGoogle Scholar
  33. 33.
    Zhang Y, Guo SZ, Lu ZM, Luo H (2013) Reversible data hiding for BTC-compressed images based on lossless coding of mean tables. IEICE Trans Commun E96.B(2):624–631CrossRefGoogle Scholar
  34. 34.
    Zheng Y, Jeon B, Xu D, Wu QMJ, Zhang H (2015) Image segmentation by generalized hierarchical fuzzy C-means algorithm. J Intell Fuzzy Syst 28(2):961–973Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Computer and SoftwareNanjing University of Information Science and TechnologyNanjingChina
  2. 2.Department of Electronic Communication and Software EngineeringNanfang College of Sun Yat-Sen UniversityGuangzhouChina
  3. 3.Department of Business AdministrationNanfang College of Sun Yat-Sen UniversityGuangzhouChina
  4. 4.Department of Computer Science and Information EngineeringNational Taichung University of Science and TechnologyTaichungTaiwan

Personalised recommendations