Multimedia Tools and Applications

, Volume 76, Issue 20, pp 20691–20717 | Cite as

Malicious inter-frame video tampering detection in MPEG videos using time and spatial domain analysis of quantization effects

  • Javad Abbasi Aghamaleki
  • Alireza Behrad


In this paper, a new algorithm is proposed for forgery detection in MPEG videos using spatial and time domain analysis of quantization effect on DCT coefficients of I and residual errors of P frames. The proposed algorithm consists of three modules, including double compression detection, malicious tampering detection and decision fusion. Double compression detection module employs spatial domain analysis using first significant digit distribution of DCT coefficients in I frames to detect single and double compressed videos using an SVM classifier. Double compression does not necessarily imply the existence of malignant tampering in the video. Therefore, malicious tampering detection module utilizes time domain analysis of quantization effect on residual errors of P frames to identify malicious inter-frame forgery comprising frame insertion or deletion. Finally, decision fusion module is used to classify input videos into three categories, including single compressed videos, double compressed videos without malicious tampering and double compressed videos with malicious tampering. The experimental results and the comparison of the results of the proposed method with those of other methods show the efficiency of the proposed algorithm.


Video forgery detection Passive forensics Frame deletion/insertion Residual error First digit distribution Benford’s law 


  1. 1.
    Arab F, Abdullah SM, Hashim SZM, Manaf AA, Zamani M (2015) A robust video watermarking technique for the tamper detection of surveillance systems. Multimed Tools Appl 1–31. doi: 10.1007/s11042-015-2800-5
  2. 2.
    Bestagini P, Milani S, Tagliasacchi M, Tubaro S (2013) Local tampering detection in video sequences. In: 2013 I.E. 15th International Workshop on Multimedia Signal Processing (MMSP). IEEE, p 488–493Google Scholar
  3. 3.
    Carter T (2007) An introduction to information theory and entropy. Complex systems summer school, Santa FeGoogle Scholar
  4. 4.
    Chen PH, Lin CJ, Schölkopf B (2005) A tutorial on ν‐support vector machines. Appl Stoch Model Bus Ind 21(2):111–136MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chen W, Shi YQ (2009) Detection of double MPEG compression based on first digit statistics. In: Digital watermarking. Springer, p 16–30Google Scholar
  6. 6.
    Dong Q, Yang G, Zhu N (2012) A MCEA based passive forensics scheme for detecting frame-based video tampering. Digit Investig 9(2):151–159CrossRefGoogle Scholar
  7. 7.
    Dueck D (2001) MPEG-2 video transcoding. University of ManitobaGoogle Scholar
  8. 8.
    Feng C, Xu Z, Zhang W, Xu Y (2014) Automatic location of frame deletion point for digital video forensics. In: Proceedings of the 2nd ACM workshop on Information hiding and multimedia security. ACM, p 171–179Google Scholar
  9. 9.
    Gironi A, Fontani M, Bianchi T, Piva A, Barni M (2014) A video forensic technique for detecting frame deletion and insertion. In: 2014 I.E. International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, p 6226–6230Google Scholar
  10. 10.
    Jiang X, Wang W, Sun T, Shi YQ, Wang S (2013) Detection of double compression in MPEG-4 videos based on Markov statistics. IEEE Signal Process Lett 20(5):447–450CrossRefGoogle Scholar
  11. 11.
    Kang X, Liu J, Liu H, Wang ZJ (2015) Forensics and counter anti-forensics of video inter-frame forgery. Multimed Tools Appl 1–21. doi: 10.1007/s11042-015-2762-7
  12. 12.
    Li F, Huang T (2014) Video copy-move forgery detection and localization based on structural similarity. In: Proceedings of the 3rd International Conference on Multimedia Technology (ICMT 2013). Springer, p 63–76Google Scholar
  13. 13.
    Liao D, Yang R, Liu H, Li J, Huang J, Double H (2011) 264/AVC compression detection using quantized nonzero AC coefficients. In: IS&T/SPIE Electronic Imaging. International Society for Optics and Photonics, p 78800Q-78800Q-78810Google Scholar
  14. 14.
    Lin C-S, Tsay J-J (2014) A passive approach for effective detection and localization of region-level video forgery with spatio-temporal coherence analysis. Digit Investig 11(2):120–140CrossRefGoogle Scholar
  15. 15.
    Milani S, Fontani M, Bestagini P, Barni M, Piva A, Tagliasacchi M, Tubaro S (2012) An overview on video forensics. APSIPA Trans Signal Inf Proces 1, e2CrossRefGoogle Scholar
  16. 16.
    Milani S, Tagliasacchi M, Tubaro S (2014) Discriminating multiple JPEG compressions using first digit features. APSIPA Trans Signal Inf Proces 3, e19Google Scholar
  17. 17.
    Ravi H, Subramanyam A, Gupta G, Kumar BA (2014) Compression noise based video forgery detection. In: 2014 I.E. International Conference on Image Processing (ICIP). IEEE, p 5352–5356Google Scholar
  18. 18.
    Rocha A, Scheirer W, Boult T, Goldenstein S (2011) Vision of the unseen: current trends and challenges in digital image and video forensics. ACM Comput Surv 43(4):1–42. doi: 10.1145/1978802.1978805 CrossRefGoogle Scholar
  19. 19.
    Shanableh T (2013) Detection of frame deletion for digital video forensics. Digit Investig 10(4):350–360CrossRefGoogle Scholar
  20. 20.
    Stamm MC, Lin WS, Liu KR (2012) Temporal forensics and anti-forensics for motion compensated video. IEEE Trans Inf Forensics Secur 7(4):1315–1329CrossRefGoogle Scholar
  21. 21.
    Su Y, Nie W, Zhang C (2011) A frame tampering detection algorithm for MPEG videos. In: 2011 6th IEEE Joint International Information Technology and Artificial Intelligence Conference (ITAIC). IEEE, p 461–464Google Scholar
  22. 22.
    Sun T, Wang W, Jiang X (2012) Exposing video forgeries by detecting MPEG double compression. In: 2012 I.E. International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, p 1389–1392Google Scholar
  23. 23.
    Tian L, Zheng N, Xue J, Li C (2015) Authentication and copyright protection watermarking scheme for H. 264 based on visual saliency and secret sharing. Multimed Tools Appl 74(9):2991–3011. doi: 10.1007/s11042-013-1765-5 CrossRefGoogle Scholar
  24. 24.
    Union IT (1995) ISO/IEC 13818–2 MPEG-2. Geneva, ITU H 262Google Scholar
  25. 25.
    Vazquez-Padin D, Fontani M, Bianchi T, Comesaña P, Piva A, Barni M (2012) Detection of video double encoding with GOP size estimation. In: 2012 I.E. International Workshop on Information Forensics and Security (WIFS). IEEE, p 151–156Google Scholar
  26. 26.
    Wang W, Farid H (2006) Exposing digital forgeries in video by detecting double MPEG compression. In: Proceedings of the 8th workshop on Multimedia and security. ACM, p 37–47Google Scholar
  27. 27.
    Wang W, Farid H (2009) Exposing digital forgeries in video by detecting double quantization. In: Proceedings of the 11th ACM workshop on Multimedia and security. ACM, p 39–48Google Scholar
  28. 28.
    Wu Y, Jiang X, Sun T, Wang W (2014) Exposing video inter-frame forgery based on velocity field consistency. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, p 2674–2678Google Scholar
  29. 29.
    Xu J, Su Y, You X (2012) Detection of video transcoding for digital forensics. In: International Conference on Audio, Language and Image Processing (ICALIP). IEEE, p 160–164Google Scholar
  30. 30.
    Yang J, Huang T, Su L (2014) Using similarity analysis to detect frame duplication forgery in videos. Multimed Tools Appl 75(4):1793–1811. doi: 10.1007/s11042-014-2374-7 CrossRefGoogle Scholar
  31. 31.

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Electrical EngineeringShahed UniversityTehranIran

Personalised recommendations